The cuspidal class number formula for the modular curves X1(2p)
Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application o...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2012-01, Vol.64 (1), p.23-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of the Mathematical Society of Japan |
container_volume | 64 |
creator | TAKAGI, Toshikazu |
description | Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0. |
doi_str_mv | 10.2969/jmsj/06410023 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1327586973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2969_jmsj_06410023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</originalsourceid><addsrcrecordid>eNo9kM1LxDAUxIMoWFeP3nvUQ93kvSZNTrIUv6DgZRe8lTRJsaW1JdkK_ve2dPX04w0zw2MIuWX0AZRQ27YP7ZaKlFEKeEYiJiVLABHPSTRLPOEi5ZfkKoSW0lQoUBF53H-62ExhbKzuYtPpEOKvqa-cj-vB91OnF8bH2dUPdj797PbfLsQf7A7G-2tyUesuuJsTN-Tw_LTPX5Pi_eUt3xWJQVCYWKjA1gy5tSAB9fyiq42xyA26ijJVoQaVsprzTKJwmbWSg9WWVopKl-GG7Nbe0Q-tM0c3ma6x5eibXvufctBNmR-Kk3rCskfJEDIuhcpw7kjWDuOHELyr_-OMlsuCa-JvQfwFYBhktQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The cuspidal class number formula for the modular curves X1(2p)</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>TAKAGI, Toshikazu</creator><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><description>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</description><identifier>ISSN: 0025-5645</identifier><identifier>EISSN: 1881-2333</identifier><identifier>DOI: 10.2969/jmsj/06410023</identifier><language>eng</language><publisher>Mathematical Society of Japan</publisher><subject>11F03 ; 11G05 ; 11G18 ; 14G05 ; 14G35 ; 14H40 ; 14H52 ; cuspidal class number ; elliptic curve ; Jacobian variety ; modular curve ; modular unit ; torsion subgroup</subject><ispartof>Journal of the Mathematical Society of Japan, 2012-01, Vol.64 (1), p.23-85</ispartof><rights>Copyright 2012 Mathematical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</citedby><cites>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><title>The cuspidal class number formula for the modular curves X1(2p)</title><title>Journal of the Mathematical Society of Japan</title><description>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</description><subject>11F03</subject><subject>11G05</subject><subject>11G18</subject><subject>14G05</subject><subject>14G35</subject><subject>14H40</subject><subject>14H52</subject><subject>cuspidal class number</subject><subject>elliptic curve</subject><subject>Jacobian variety</subject><subject>modular curve</subject><subject>modular unit</subject><subject>torsion subgroup</subject><issn>0025-5645</issn><issn>1881-2333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAUxIMoWFeP3nvUQ93kvSZNTrIUv6DgZRe8lTRJsaW1JdkK_ve2dPX04w0zw2MIuWX0AZRQ27YP7ZaKlFEKeEYiJiVLABHPSTRLPOEi5ZfkKoSW0lQoUBF53H-62ExhbKzuYtPpEOKvqa-cj-vB91OnF8bH2dUPdj797PbfLsQf7A7G-2tyUesuuJsTN-Tw_LTPX5Pi_eUt3xWJQVCYWKjA1gy5tSAB9fyiq42xyA26ijJVoQaVsprzTKJwmbWSg9WWVopKl-GG7Nbe0Q-tM0c3ma6x5eibXvufctBNmR-Kk3rCskfJEDIuhcpw7kjWDuOHELyr_-OMlsuCa-JvQfwFYBhktQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>TAKAGI, Toshikazu</creator><general>Mathematical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120101</creationdate><title>The cuspidal class number formula for the modular curves X1(2p)</title><author>TAKAGI, Toshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>11F03</topic><topic>11G05</topic><topic>11G18</topic><topic>14G05</topic><topic>14G35</topic><topic>14H40</topic><topic>14H52</topic><topic>cuspidal class number</topic><topic>elliptic curve</topic><topic>Jacobian variety</topic><topic>modular curve</topic><topic>modular unit</topic><topic>torsion subgroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Mathematical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKAGI, Toshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cuspidal class number formula for the modular curves X1(2p)</atitle><jtitle>Journal of the Mathematical Society of Japan</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>64</volume><issue>1</issue><spage>23</spage><epage>85</epage><pages>23-85</pages><issn>0025-5645</issn><eissn>1881-2333</eissn><abstract>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</abstract><pub>Mathematical Society of Japan</pub><doi>10.2969/jmsj/06410023</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5645 |
ispartof | Journal of the Mathematical Society of Japan, 2012-01, Vol.64 (1), p.23-85 |
issn | 0025-5645 1881-2333 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1327586973 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | 11F03 11G05 11G18 14G05 14G35 14H40 14H52 cuspidal class number elliptic curve Jacobian variety modular curve modular unit torsion subgroup |
title | The cuspidal class number formula for the modular curves X1(2p) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cuspidal%20class%20number%20formula%20for%20the%20modular%20curves%20X1(2p)&rft.jtitle=Journal%20of%20the%20Mathematical%20Society%20of%20Japan&rft.au=TAKAGI,%20Toshikazu&rft.date=2012-01-01&rft.volume=64&rft.issue=1&rft.spage=23&rft.epage=85&rft.pages=23-85&rft.issn=0025-5645&rft.eissn=1881-2333&rft_id=info:doi/10.2969/jmsj/06410023&rft_dat=%3Ccrossref_proje%3E10_2969_jmsj_06410023%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |