The cuspidal class number formula for the modular curves X1(2p)

Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2012-01, Vol.64 (1), p.23-85
1. Verfasser: TAKAGI, Toshikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 23
container_title Journal of the Mathematical Society of Japan
container_volume 64
creator TAKAGI, Toshikazu
description Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.
doi_str_mv 10.2969/jmsj/06410023
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1327586973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2969_jmsj_06410023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</originalsourceid><addsrcrecordid>eNo9kM1LxDAUxIMoWFeP3nvUQ93kvSZNTrIUv6DgZRe8lTRJsaW1JdkK_ve2dPX04w0zw2MIuWX0AZRQ27YP7ZaKlFEKeEYiJiVLABHPSTRLPOEi5ZfkKoSW0lQoUBF53H-62ExhbKzuYtPpEOKvqa-cj-vB91OnF8bH2dUPdj797PbfLsQf7A7G-2tyUesuuJsTN-Tw_LTPX5Pi_eUt3xWJQVCYWKjA1gy5tSAB9fyiq42xyA26ijJVoQaVsprzTKJwmbWSg9WWVopKl-GG7Nbe0Q-tM0c3ma6x5eibXvufctBNmR-Kk3rCskfJEDIuhcpw7kjWDuOHELyr_-OMlsuCa-JvQfwFYBhktQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The cuspidal class number formula for the modular curves X1(2p)</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>TAKAGI, Toshikazu</creator><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><description>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</description><identifier>ISSN: 0025-5645</identifier><identifier>EISSN: 1881-2333</identifier><identifier>DOI: 10.2969/jmsj/06410023</identifier><language>eng</language><publisher>Mathematical Society of Japan</publisher><subject>11F03 ; 11G05 ; 11G18 ; 14G05 ; 14G35 ; 14H40 ; 14H52 ; cuspidal class number ; elliptic curve ; Jacobian variety ; modular curve ; modular unit ; torsion subgroup</subject><ispartof>Journal of the Mathematical Society of Japan, 2012-01, Vol.64 (1), p.23-85</ispartof><rights>Copyright 2012 Mathematical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</citedby><cites>FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><title>The cuspidal class number formula for the modular curves X1(2p)</title><title>Journal of the Mathematical Society of Japan</title><description>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</description><subject>11F03</subject><subject>11G05</subject><subject>11G18</subject><subject>14G05</subject><subject>14G35</subject><subject>14H40</subject><subject>14H52</subject><subject>cuspidal class number</subject><subject>elliptic curve</subject><subject>Jacobian variety</subject><subject>modular curve</subject><subject>modular unit</subject><subject>torsion subgroup</subject><issn>0025-5645</issn><issn>1881-2333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAUxIMoWFeP3nvUQ93kvSZNTrIUv6DgZRe8lTRJsaW1JdkK_ve2dPX04w0zw2MIuWX0AZRQ27YP7ZaKlFEKeEYiJiVLABHPSTRLPOEi5ZfkKoSW0lQoUBF53H-62ExhbKzuYtPpEOKvqa-cj-vB91OnF8bH2dUPdj797PbfLsQf7A7G-2tyUesuuJsTN-Tw_LTPX5Pi_eUt3xWJQVCYWKjA1gy5tSAB9fyiq42xyA26ijJVoQaVsprzTKJwmbWSg9WWVopKl-GG7Nbe0Q-tM0c3ma6x5eibXvufctBNmR-Kk3rCskfJEDIuhcpw7kjWDuOHELyr_-OMlsuCa-JvQfwFYBhktQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>TAKAGI, Toshikazu</creator><general>Mathematical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120101</creationdate><title>The cuspidal class number formula for the modular curves X1(2p)</title><author>TAKAGI, Toshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3293-d2b2df135dd2823a100efccd35c3eb019b3a2941f557836e7dd852dad0b908e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>11F03</topic><topic>11G05</topic><topic>11G18</topic><topic>14G05</topic><topic>14G35</topic><topic>14H40</topic><topic>14H52</topic><topic>cuspidal class number</topic><topic>elliptic curve</topic><topic>Jacobian variety</topic><topic>modular curve</topic><topic>modular unit</topic><topic>torsion subgroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAKAGI, Toshikazu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Mathematical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKAGI, Toshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cuspidal class number formula for the modular curves X1(2p)</atitle><jtitle>Journal of the Mathematical Society of Japan</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>64</volume><issue>1</issue><spage>23</spage><epage>85</epage><pages>23-85</pages><issn>0025-5645</issn><eissn>1881-2333</eissn><abstract>Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.</abstract><pub>Mathematical Society of Japan</pub><doi>10.2969/jmsj/06410023</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5645
ispartof Journal of the Mathematical Society of Japan, 2012-01, Vol.64 (1), p.23-85
issn 0025-5645
1881-2333
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1327586973
source EZB-FREE-00999 freely available EZB journals
subjects 11F03
11G05
11G18
14G05
14G35
14H40
14H52
cuspidal class number
elliptic curve
Jacobian variety
modular curve
modular unit
torsion subgroup
title The cuspidal class number formula for the modular curves X1(2p)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cuspidal%20class%20number%20formula%20for%20the%20modular%20curves%20X1(2p)&rft.jtitle=Journal%20of%20the%20Mathematical%20Society%20of%20Japan&rft.au=TAKAGI,%20Toshikazu&rft.date=2012-01-01&rft.volume=64&rft.issue=1&rft.spage=23&rft.epage=85&rft.pages=23-85&rft.issn=0025-5645&rft.eissn=1881-2333&rft_id=info:doi/10.2969/jmsj/06410023&rft_dat=%3Ccrossref_proje%3E10_2969_jmsj_06410023%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true