The cuspidal class number formula for the modular curves X1(2p)

Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Mathematical Society of Japan 2012-01, Vol.64 (1), p.23-85
1. Verfasser: TAKAGI, Toshikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0.
ISSN:0025-5645
1881-2333
DOI:10.2969/jmsj/06410023