The cuspidal class number formula for the modular curves X1(2p)
Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application o...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2012-01, Vol.64 (1), p.23-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p be a prime not equal to 2 or 3. We determine the group of all modular units on the modular curve X1(2p), and its full cuspidal class number. We mention a fact concerning the non-existence of torsion points of order 5 or 7 of elliptic curves over Q of square-free conductor n as an application of a result by Agashe and the cuspidal class number formula for X0(n). We also state the formula for the order of the subgroup of the Q-rational torsion subgroup of J1(2p) generated by the Q-rational cuspidal divisors of degree 0. |
---|---|
ISSN: | 0025-5645 1881-2333 |
DOI: | 10.2969/jmsj/06410023 |