On the topology of the Newton boundary at infinity
We are interested in a global version of Lê-Ramanujam \mu -constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial function with Newton non-degenerate is uniquely determined by its Newton b...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2008-10, Vol.60 (4), p.1065-1081 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 4 |
container_start_page | 1065 |
container_title | Journal of the Mathematical Society of Japan |
container_volume | 60 |
creator | PHAM, Tien Son |
description | We are interested in a global version of Lê-Ramanujam \mu
-constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial function with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Furthermore, the continuity of atypical values for a family of complex polynomial functions also is considered. |
doi_str_mv | 10.2969/jmsj/06041065 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1225894033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2969_jmsj_06041065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-47964f1961d9797424335e507a42c94a2582c105c562e6456c42817410d9af213</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOFaX7vsH4iQ3jzbLofiC4mycdYlpoimdprQZpP_ejq2uDufCOXz3IHRPyQMoqbbNcWy2RBJOiRQXaEPznGJgjF2iDSEgsJBcXKObcWwI4VKB2iDYd2n8smkMfWjD55QG9-vf7HcMXfoRTl2thynVMfWd852P0y26crod7d2qCTo8Pb4XL7jcP78WuxIbnkPEPFOSO6okrVWmMg6cMWEFyTQHo7gGkYOhRBghwc5g0nDIaTbD10o7oCxBu6W3H0JjTbQn0_q66gd_nImqoH1VHMr1usp5gorC3K04mT9PEF46zBDGcbDuP05JdR5tSfyNxn4A65FeiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the topology of the Newton boundary at infinity</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>PHAM, Tien Son</creator><creatorcontrib>PHAM, Tien Son</creatorcontrib><description>We are interested in a global version of Lê-Ramanujam \mu
-constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial function with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Furthermore, the continuity of atypical values for a family of complex polynomial functions also is considered.</description><identifier>ISSN: 0025-5645</identifier><identifier>EISSN: 1881-2333</identifier><identifier>DOI: 10.2969/jmsj/06041065</identifier><language>eng</language><publisher>Mathematical Society of Japan</publisher><subject>32S15 ; 32S20 ; 32S30 ; family of polynomials ; global monodromy fibration ; Newton polyhedron ; non-degeneracy condition</subject><ispartof>Journal of the Mathematical Society of Japan, 2008-10, Vol.60 (4), p.1065-1081</ispartof><rights>Copyright 2008 Mathematical Society of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-47964f1961d9797424335e507a42c94a2582c105c562e6456c42817410d9af213</citedby><cites>FETCH-LOGICAL-c482t-47964f1961d9797424335e507a42c94a2582c105c562e6456c42817410d9af213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>PHAM, Tien Son</creatorcontrib><title>On the topology of the Newton boundary at infinity</title><title>Journal of the Mathematical Society of Japan</title><description>We are interested in a global version of Lê-Ramanujam \mu
-constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial function with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Furthermore, the continuity of atypical values for a family of complex polynomial functions also is considered.</description><subject>32S15</subject><subject>32S20</subject><subject>32S30</subject><subject>family of polynomials</subject><subject>global monodromy fibration</subject><subject>Newton polyhedron</subject><subject>non-degeneracy condition</subject><issn>0025-5645</issn><issn>1881-2333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOFaX7vsH4iQ3jzbLofiC4mycdYlpoimdprQZpP_ejq2uDufCOXz3IHRPyQMoqbbNcWy2RBJOiRQXaEPznGJgjF2iDSEgsJBcXKObcWwI4VKB2iDYd2n8smkMfWjD55QG9-vf7HcMXfoRTl2thynVMfWd852P0y26crod7d2qCTo8Pb4XL7jcP78WuxIbnkPEPFOSO6okrVWmMg6cMWEFyTQHo7gGkYOhRBghwc5g0nDIaTbD10o7oCxBu6W3H0JjTbQn0_q66gd_nImqoH1VHMr1usp5gorC3K04mT9PEF46zBDGcbDuP05JdR5tSfyNxn4A65FeiA</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>PHAM, Tien Son</creator><general>Mathematical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20081001</creationdate><title>On the topology of the Newton boundary at infinity</title><author>PHAM, Tien Son</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-47964f1961d9797424335e507a42c94a2582c105c562e6456c42817410d9af213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>32S15</topic><topic>32S20</topic><topic>32S30</topic><topic>family of polynomials</topic><topic>global monodromy fibration</topic><topic>Newton polyhedron</topic><topic>non-degeneracy condition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PHAM, Tien Son</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Mathematical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PHAM, Tien Son</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the topology of the Newton boundary at infinity</atitle><jtitle>Journal of the Mathematical Society of Japan</jtitle><date>2008-10-01</date><risdate>2008</risdate><volume>60</volume><issue>4</issue><spage>1065</spage><epage>1081</epage><pages>1065-1081</pages><issn>0025-5645</issn><eissn>1881-2333</eissn><abstract>We are interested in a global version of Lê-Ramanujam \mu
-constant theorem from the Newton polyhedron point of view. More precisely, we prove a stability theorem which says that the global monodromy fibration of a polynomial function with Newton non-degenerate is uniquely determined by its Newton boundary at infinity. Furthermore, the continuity of atypical values for a family of complex polynomial functions also is considered.</abstract><pub>Mathematical Society of Japan</pub><doi>10.2969/jmsj/06041065</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5645 |
ispartof | Journal of the Mathematical Society of Japan, 2008-10, Vol.60 (4), p.1065-1081 |
issn | 0025-5645 1881-2333 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jmsj_1225894033 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 32S15 32S20 32S30 family of polynomials global monodromy fibration Newton polyhedron non-degeneracy condition |
title | On the topology of the Newton boundary at infinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20topology%20of%20the%20Newton%20boundary%20at%20infinity&rft.jtitle=Journal%20of%20the%20Mathematical%20Society%20of%20Japan&rft.au=PHAM,%20Tien%20Son&rft.date=2008-10-01&rft.volume=60&rft.issue=4&rft.spage=1065&rft.epage=1081&rft.pages=1065-1081&rft.issn=0025-5645&rft.eissn=1881-2333&rft_id=info:doi/10.2969/jmsj/06041065&rft_dat=%3Ccrossref_proje%3E10_2969_jmsj_06041065%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |