On the structure of the group of Lipschitz homeomorphisms and its subgroups
We consider the group of Lipschitz homeomorphisms of a Lipschitz manifold and its subgroups. First we study properties of Lipschitz homeomorphisms and show the local contractibility and the perfectness of the group of Lipschitz homeomorphisms. Next using this result we can prove that the identity co...
Gespeichert in:
Veröffentlicht in: | Journal of the Mathematical Society of Japan 2001, Vol.53 (no. 3), p.501-511 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the group of Lipschitz homeomorphisms of a Lipschitz manifold and its subgroups. First we study properties of Lipschitz homeomorphisms and show the local contractibility and the perfectness of the group of Lipschitz homeomorphisms. Next using this result we can prove that the identity component of the group of equivariant Lipschitz homeomorphisms of a principal G -bundle over a closed Lipschitz manifold is perfect when G is a compact Lie group. |
---|---|
ISSN: | 1881-2333 |
DOI: | 10.2969/jmsj/05330501 |