APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT

It is known that some problems of synthesis with continuous time and stationary parameters can be reduced to the solution of Wiener-Hopf equations on the semiaxis R+ = [0, ∞). If the problem of synthesis is not stationary, then the Wiener-Hopf method is not applicable. In this case the problem of sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of integral equations and applications 1996, Vol.8 (1), p.1-17
Hauptverfasser: BATUREV, A.A., KRAVCHENKO, V.G., LITVINCHUK, G.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title The Journal of integral equations and applications
container_volume 8
creator BATUREV, A.A.
KRAVCHENKO, V.G.
LITVINCHUK, G.S.
description It is known that some problems of synthesis with continuous time and stationary parameters can be reduced to the solution of Wiener-Hopf equations on the semiaxis R+ = [0, ∞). If the problem of synthesis is not stationary, then the Wiener-Hopf method is not applicable. In this case the problem of synthesis is reduced to a singular integral equation Tφ = f on the unit circle T with a non-Carleman shift of T onto itself, which has a finite set of fixed points. An estimate for dim ker T is obtained and an approximation algorithm of this estimate is given. For the case dim ker T = 0 we construct an approximate solution of the equation Tφ = f.
doi_str_mv 10.1216/jiea/1181075913
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1181075913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26163187</jstor_id><sourcerecordid>26163187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2753-d2a318ae0ed4f294f10a149ae5f5ffc7afb4b1ec5f72f772bb9dd6cf28a47f6e3</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFbXroT5A7FzJ8lMZjnEtAnkUfNAd2GSzEBCJSWpC_-9LS114-rA4X4f3IPQM5BXoMBWQ6_VCsADwl0B9g1agLA9izLKbtGCeIJbtmD0Hj3M80AIOK5gC5TI7TbPPqNElgFOgjLM3gq8znJcROmmimWOo7QMNrmMcfBeyTLK0gJ_RGWIJU6z1PJlHgeJTHERRuvyEd0ZtZv10yWXqFoHpR9acbaJfBlbLeWubXVU2eApTXTnGCocA0SBI5R2jWtMy5VpnAZ06xpODee0aUTXsdZQTzncMG0vkTx799M46Pagv9td39X7qf9S0089qr72q_jSXuK0T_23z9GxOjvaaZznSZsrDqQ-LfoP8XImhvkwTtdzyoAd3-H2Lz7lbnY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>BATUREV, A.A. ; KRAVCHENKO, V.G. ; LITVINCHUK, G.S.</creator><creatorcontrib>BATUREV, A.A. ; KRAVCHENKO, V.G. ; LITVINCHUK, G.S.</creatorcontrib><description>It is known that some problems of synthesis with continuous time and stationary parameters can be reduced to the solution of Wiener-Hopf equations on the semiaxis R+ = [0, ∞). If the problem of synthesis is not stationary, then the Wiener-Hopf method is not applicable. In this case the problem of synthesis is reduced to a singular integral equation Tφ = f on the unit circle T with a non-Carleman shift of T onto itself, which has a finite set of fixed points. An estimate for dim ker T is obtained and an approximation algorithm of this estimate is given. For the case dim ker T = 0 we construct an approximate solution of the equation Tφ = f.</description><identifier>ISSN: 0897-3962</identifier><identifier>EISSN: 1938-2626</identifier><identifier>DOI: 10.1216/jiea/1181075913</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Degrees of polynomials ; Differential equations ; Geometric translations ; Linear systems ; Mathematical integrals ; Mathematical vectors ; Polynomials ; Singular integral equations ; Solvability</subject><ispartof>The Journal of integral equations and applications, 1996, Vol.8 (1), p.1-17</ispartof><rights>Copyright ©1996 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 1996 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2753-d2a318ae0ed4f294f10a149ae5f5ffc7afb4b1ec5f72f772bb9dd6cf28a47f6e3</citedby><cites>FETCH-LOGICAL-c2753-d2a318ae0ed4f294f10a149ae5f5ffc7afb4b1ec5f72f772bb9dd6cf28a47f6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26163187$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26163187$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,781,785,804,833,886,927,4025,27928,27929,27930,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>BATUREV, A.A.</creatorcontrib><creatorcontrib>KRAVCHENKO, V.G.</creatorcontrib><creatorcontrib>LITVINCHUK, G.S.</creatorcontrib><title>APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT</title><title>The Journal of integral equations and applications</title><description>It is known that some problems of synthesis with continuous time and stationary parameters can be reduced to the solution of Wiener-Hopf equations on the semiaxis R+ = [0, ∞). If the problem of synthesis is not stationary, then the Wiener-Hopf method is not applicable. In this case the problem of synthesis is reduced to a singular integral equation Tφ = f on the unit circle T with a non-Carleman shift of T onto itself, which has a finite set of fixed points. An estimate for dim ker T is obtained and an approximation algorithm of this estimate is given. For the case dim ker T = 0 we construct an approximate solution of the equation Tφ = f.</description><subject>Degrees of polynomials</subject><subject>Differential equations</subject><subject>Geometric translations</subject><subject>Linear systems</subject><subject>Mathematical integrals</subject><subject>Mathematical vectors</subject><subject>Polynomials</subject><subject>Singular integral equations</subject><subject>Solvability</subject><issn>0897-3962</issn><issn>1938-2626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AUhQdRsFbXroT5A7FzJ8lMZjnEtAnkUfNAd2GSzEBCJSWpC_-9LS114-rA4X4f3IPQM5BXoMBWQ6_VCsADwl0B9g1agLA9izLKbtGCeIJbtmD0Hj3M80AIOK5gC5TI7TbPPqNElgFOgjLM3gq8znJcROmmimWOo7QMNrmMcfBeyTLK0gJ_RGWIJU6z1PJlHgeJTHERRuvyEd0ZtZv10yWXqFoHpR9acbaJfBlbLeWubXVU2eApTXTnGCocA0SBI5R2jWtMy5VpnAZ06xpODee0aUTXsdZQTzncMG0vkTx799M46Pagv9td39X7qf9S0089qr72q_jSXuK0T_23z9GxOjvaaZznSZsrDqQ-LfoP8XImhvkwTtdzyoAd3-H2Lz7lbnY</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>BATUREV, A.A.</creator><creator>KRAVCHENKO, V.G.</creator><creator>LITVINCHUK, G.S.</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1996</creationdate><title>APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT</title><author>BATUREV, A.A. ; KRAVCHENKO, V.G. ; LITVINCHUK, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2753-d2a318ae0ed4f294f10a149ae5f5ffc7afb4b1ec5f72f772bb9dd6cf28a47f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Degrees of polynomials</topic><topic>Differential equations</topic><topic>Geometric translations</topic><topic>Linear systems</topic><topic>Mathematical integrals</topic><topic>Mathematical vectors</topic><topic>Polynomials</topic><topic>Singular integral equations</topic><topic>Solvability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BATUREV, A.A.</creatorcontrib><creatorcontrib>KRAVCHENKO, V.G.</creatorcontrib><creatorcontrib>LITVINCHUK, G.S.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of integral equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BATUREV, A.A.</au><au>KRAVCHENKO, V.G.</au><au>LITVINCHUK, G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT</atitle><jtitle>The Journal of integral equations and applications</jtitle><date>1996</date><risdate>1996</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0897-3962</issn><eissn>1938-2626</eissn><abstract>It is known that some problems of synthesis with continuous time and stationary parameters can be reduced to the solution of Wiener-Hopf equations on the semiaxis R+ = [0, ∞). If the problem of synthesis is not stationary, then the Wiener-Hopf method is not applicable. In this case the problem of synthesis is reduced to a singular integral equation Tφ = f on the unit circle T with a non-Carleman shift of T onto itself, which has a finite set of fixed points. An estimate for dim ker T is obtained and an approximation algorithm of this estimate is given. For the case dim ker T = 0 we construct an approximate solution of the equation Tφ = f.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/jiea/1181075913</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-3962
ispartof The Journal of integral equations and applications, 1996, Vol.8 (1), p.1-17
issn 0897-3962
1938-2626
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jiea_1181075913
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Degrees of polynomials
Differential equations
Geometric translations
Linear systems
Mathematical integrals
Mathematical vectors
Polynomials
Singular integral equations
Solvability
title APPROXIMATE METHODS FOR SINGULAR INTEGRAL EQUATIONS WITH A NON-CARLEMAN SHIFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATE%20METHODS%20FOR%20SINGULAR%20INTEGRAL%20EQUATIONS%20WITH%20A%20NON-CARLEMAN%20SHIFT&rft.jtitle=The%20Journal%20of%20integral%20equations%20and%20applications&rft.au=BATUREV,%20A.A.&rft.date=1996&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0897-3962&rft.eissn=1938-2626&rft_id=info:doi/10.1216/jiea/1181075913&rft_dat=%3Cjstor_proje%3E26163187%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26163187&rfr_iscdi=true