On the evolution of a Hermitian metric by its Chern-Ricci form

We consider the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci form. This is an evolution equation first studied by M. Gill, and coincides with the Kähler-Ricci flow if the initial metric is Kähler. We find the maximal existence time for the flow in terms of the ini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2015-01, Vol.99 (1), p.125-163
Hauptverfasser: Tosatti, Valentino, Weinkove, Ben
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 125
container_title Journal of differential geometry
container_volume 99
creator Tosatti, Valentino
Weinkove, Ben
description We consider the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci form. This is an evolution equation first studied by M. Gill, and coincides with the Kähler-Ricci flow if the initial metric is Kähler. We find the maximal existence time for the flow in terms of the initial data. We investigate the behavior of the flow on complex surfaces when the initial metric is Gauduchon, on complex manifolds with negative first Chern class, and on some Hopf manifolds. Finally, we discuss a new estimate for the complex Monge-Ampère equation on Hermitian manifolds.
doi_str_mv 10.4310/jdg/1418345539
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1418345539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_jdg_1418345539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7a46cd1b218aa7a46527562d4b1410bac95f14e668f6a2da6c916bec9cbf56d13</originalsourceid><addsrcrecordid>eNpdkF1LwzAYhYMoWKe3XucPZMt32xtRim5CYSAOdlfSNHEpazPSTNi_t2NFwavDeeE8vDwAPBI854zgRdt8LQgnGeNCsPwKJCTnAqWcba9BgjGlCHO8vQV3w9BiTHhGswQ8rXsYdwaab78_Rud76C1UcGVC56JTPexMDE7D-gRdHGCxM6FHH05rB60P3T24sWo_mIcpZ2Dz9vpZrFC5Xr4XLyXSjMmIUsWlbkhNSabUuQiaCkkbXo8P41rpXFjCjZSZlYo2SuqcyNroXNdWyIawGXi-cA_Bt0ZHc9R711SH4DoVTpVXrio25XSdYvRR_fkYEfMLQgc_DMHY3zXB1Vng_8EPD_5kKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the evolution of a Hermitian metric by its Chern-Ricci form</title><source>Project Euclid Complete</source><creator>Tosatti, Valentino ; Weinkove, Ben</creator><creatorcontrib>Tosatti, Valentino ; Weinkove, Ben</creatorcontrib><description>We consider the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci form. This is an evolution equation first studied by M. Gill, and coincides with the Kähler-Ricci flow if the initial metric is Kähler. We find the maximal existence time for the flow in terms of the initial data. We investigate the behavior of the flow on complex surfaces when the initial metric is Gauduchon, on complex manifolds with negative first Chern class, and on some Hopf manifolds. Finally, we discuss a new estimate for the complex Monge-Ampère equation on Hermitian manifolds.</description><identifier>ISSN: 0022-040X</identifier><identifier>EISSN: 1945-743X</identifier><identifier>DOI: 10.4310/jdg/1418345539</identifier><language>eng</language><publisher>Lehigh University</publisher><ispartof>Journal of differential geometry, 2015-01, Vol.99 (1), p.125-163</ispartof><rights>Copyright 2015 Lehigh University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7a46cd1b218aa7a46527562d4b1410bac95f14e668f6a2da6c916bec9cbf56d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,922,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Tosatti, Valentino</creatorcontrib><creatorcontrib>Weinkove, Ben</creatorcontrib><title>On the evolution of a Hermitian metric by its Chern-Ricci form</title><title>Journal of differential geometry</title><description>We consider the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci form. This is an evolution equation first studied by M. Gill, and coincides with the Kähler-Ricci flow if the initial metric is Kähler. We find the maximal existence time for the flow in terms of the initial data. We investigate the behavior of the flow on complex surfaces when the initial metric is Gauduchon, on complex manifolds with negative first Chern class, and on some Hopf manifolds. Finally, we discuss a new estimate for the complex Monge-Ampère equation on Hermitian manifolds.</description><issn>0022-040X</issn><issn>1945-743X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAYhYMoWKe3XucPZMt32xtRim5CYSAOdlfSNHEpazPSTNi_t2NFwavDeeE8vDwAPBI854zgRdt8LQgnGeNCsPwKJCTnAqWcba9BgjGlCHO8vQV3w9BiTHhGswQ8rXsYdwaab78_Rud76C1UcGVC56JTPexMDE7D-gRdHGCxM6FHH05rB60P3T24sWo_mIcpZ2Dz9vpZrFC5Xr4XLyXSjMmIUsWlbkhNSabUuQiaCkkbXo8P41rpXFjCjZSZlYo2SuqcyNroXNdWyIawGXi-cA_Bt0ZHc9R711SH4DoVTpVXrio25XSdYvRR_fkYEfMLQgc_DMHY3zXB1Vng_8EPD_5kKg</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Tosatti, Valentino</creator><creator>Weinkove, Ben</creator><general>Lehigh University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>On the evolution of a Hermitian metric by its Chern-Ricci form</title><author>Tosatti, Valentino ; Weinkove, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7a46cd1b218aa7a46527562d4b1410bac95f14e668f6a2da6c916bec9cbf56d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tosatti, Valentino</creatorcontrib><creatorcontrib>Weinkove, Ben</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of differential geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tosatti, Valentino</au><au>Weinkove, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the evolution of a Hermitian metric by its Chern-Ricci form</atitle><jtitle>Journal of differential geometry</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>99</volume><issue>1</issue><spage>125</spage><epage>163</epage><pages>125-163</pages><issn>0022-040X</issn><eissn>1945-743X</eissn><abstract>We consider the evolution of a Hermitian metric on a compact complex manifold by its Chern-Ricci form. This is an evolution equation first studied by M. Gill, and coincides with the Kähler-Ricci flow if the initial metric is Kähler. We find the maximal existence time for the flow in terms of the initial data. We investigate the behavior of the flow on complex surfaces when the initial metric is Gauduchon, on complex manifolds with negative first Chern class, and on some Hopf manifolds. Finally, we discuss a new estimate for the complex Monge-Ampère equation on Hermitian manifolds.</abstract><pub>Lehigh University</pub><doi>10.4310/jdg/1418345539</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-040X
ispartof Journal of differential geometry, 2015-01, Vol.99 (1), p.125-163
issn 0022-040X
1945-743X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1418345539
source Project Euclid Complete
title On the evolution of a Hermitian metric by its Chern-Ricci form
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20evolution%20of%20a%20Hermitian%20metric%20by%20its%20Chern-Ricci%20form&rft.jtitle=Journal%20of%20differential%20geometry&rft.au=Tosatti,%20Valentino&rft.date=2015-01-01&rft.volume=99&rft.issue=1&rft.spage=125&rft.epage=163&rft.pages=125-163&rft.issn=0022-040X&rft.eissn=1945-743X&rft_id=info:doi/10.4310/jdg/1418345539&rft_dat=%3Ccrossref_proje%3E10_4310_jdg_1418345539%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true