Integrated Harnack inequalities on Lie groups

We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a versio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of differential geometry 2009-11, Vol.83 (3), p.501-550
Hauptverfasser: Driver, Bruce K., Gordina, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 3
container_start_page 501
container_title Journal of differential geometry
container_volume 83
creator Driver, Bruce K.
Gordina, Maria
description We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a version of Wang’s Harnack inequality. (A key feature of all of these inequalities is that they are dimension independent.) Finally, we show these inequalities imply quasi-invariance properties of heat kernel measures for two classes of infinite dimensional “Lie” groups.
doi_str_mv 10.4310/jdg/1264601034
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1264601034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_jdg_1264601034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f8b877857a96638b77ef945d12bc04dc3e9770fe1e15354f579fa9c6294cf55f3</originalsourceid><addsrcrecordid>eNpdkEFLxDAUhIMoWFevnvsHuvvSJE17U4q6CwUvLuytpOlLSa1tTdqD_97KFgVPAwPzMTOE3FPYckZh19bNjsYJT4AC4xckoBkXkeTsdEkCgDiOgMPpmtx43wJQnsZpQKJDP2Hj1IR1uFeuV_o9tD1-zqqzk0UfDn1YWAwbN8yjvyVXRnUe71bdkOPz01u-j4rXl0P-WESasWSKTFqlUqZCqixJWFpJiWbpUtO40sBrzTCTEgxSpIIJboTMjMp0EmdcGyEM25CHM3d0Q4t6wll3ti5HZz-U-yoHZcv8WKzuKsv88m_-gtieEdoN3js0v2kK5c9f_wPfAtdeDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrated Harnack inequalities on Lie groups</title><source>Project Euclid Complete</source><creator>Driver, Bruce K. ; Gordina, Maria</creator><creatorcontrib>Driver, Bruce K. ; Gordina, Maria</creatorcontrib><description>We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a version of Wang’s Harnack inequality. (A key feature of all of these inequalities is that they are dimension independent.) Finally, we show these inequalities imply quasi-invariance properties of heat kernel measures for two classes of infinite dimensional “Lie” groups.</description><identifier>ISSN: 0022-040X</identifier><identifier>EISSN: 1945-743X</identifier><identifier>DOI: 10.4310/jdg/1264601034</identifier><language>eng</language><publisher>Lehigh University</publisher><ispartof>Journal of differential geometry, 2009-11, Vol.83 (3), p.501-550</ispartof><rights>Copyright 2009 Lehigh University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f8b877857a96638b77ef945d12bc04dc3e9770fe1e15354f579fa9c6294cf55f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27903,27904</link.rule.ids></links><search><creatorcontrib>Driver, Bruce K.</creatorcontrib><creatorcontrib>Gordina, Maria</creatorcontrib><title>Integrated Harnack inequalities on Lie groups</title><title>Journal of differential geometry</title><description>We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a version of Wang’s Harnack inequality. (A key feature of all of these inequalities is that they are dimension independent.) Finally, we show these inequalities imply quasi-invariance properties of heat kernel measures for two classes of infinite dimensional “Lie” groups.</description><issn>0022-040X</issn><issn>1945-743X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLxDAUhIMoWFevnvsHuvvSJE17U4q6CwUvLuytpOlLSa1tTdqD_97KFgVPAwPzMTOE3FPYckZh19bNjsYJT4AC4xckoBkXkeTsdEkCgDiOgMPpmtx43wJQnsZpQKJDP2Hj1IR1uFeuV_o9tD1-zqqzk0UfDn1YWAwbN8yjvyVXRnUe71bdkOPz01u-j4rXl0P-WESasWSKTFqlUqZCqixJWFpJiWbpUtO40sBrzTCTEgxSpIIJboTMjMp0EmdcGyEM25CHM3d0Q4t6wll3ti5HZz-U-yoHZcv8WKzuKsv88m_-gtieEdoN3js0v2kK5c9f_wPfAtdeDA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Driver, Bruce K.</creator><creator>Gordina, Maria</creator><general>Lehigh University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>Integrated Harnack inequalities on Lie groups</title><author>Driver, Bruce K. ; Gordina, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f8b877857a96638b77ef945d12bc04dc3e9770fe1e15354f579fa9c6294cf55f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Driver, Bruce K.</creatorcontrib><creatorcontrib>Gordina, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of differential geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Driver, Bruce K.</au><au>Gordina, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Harnack inequalities on Lie groups</atitle><jtitle>Journal of differential geometry</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>83</volume><issue>3</issue><spage>501</spage><epage>550</epage><pages>501-550</pages><issn>0022-040X</issn><eissn>1945-743X</eissn><abstract>We show that the logarithmic derivatives of the convolution heat kernels on a uni-modular Lie group are exponentially integrable. This result is then used to prove an “integrated” Harnack inequality for these heat kernels. It is shown that this integrated Harnack inequality is equivalent to a version of Wang’s Harnack inequality. (A key feature of all of these inequalities is that they are dimension independent.) Finally, we show these inequalities imply quasi-invariance properties of heat kernel measures for two classes of infinite dimensional “Lie” groups.</abstract><pub>Lehigh University</pub><doi>10.4310/jdg/1264601034</doi><tpages>50</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-040X
ispartof Journal of differential geometry, 2009-11, Vol.83 (3), p.501-550
issn 0022-040X
1945-743X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1264601034
source Project Euclid Complete
title Integrated Harnack inequalities on Lie groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Harnack%20inequalities%20on%20Lie%20groups&rft.jtitle=Journal%20of%20differential%20geometry&rft.au=Driver,%20Bruce%20K.&rft.date=2009-11-01&rft.volume=83&rft.issue=3&rft.spage=501&rft.epage=550&rft.pages=501-550&rft.issn=0022-040X&rft.eissn=1945-743X&rft_id=info:doi/10.4310/jdg/1264601034&rft_dat=%3Ccrossref_proje%3E10_4310_jdg_1264601034%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true