On Transversally Simple Knots
This paper studies knots that are transversal to the standard contact structure in \mathbb{R}^3 bringing techniques from topological knot theory to bear on their transversal classification. We say that a transversal knot type \mathcal{TK} is transversally simple if it is determined by its topologica...
Gespeichert in:
Veröffentlicht in: | Journal of differential geometry 2000-06, Vol.55 (2), p.325-354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 325 |
container_title | Journal of differential geometry |
container_volume | 55 |
creator | Birman, Joan S. Wrinkle, Nancy C. |
description | This paper studies knots that are transversal to the standard contact structure in
\mathbb{R}^3 bringing techniques from topological knot theory to bear on their
transversal classification. We say that a transversal knot type \mathcal{TK} is
transversally simple if it is determined by its topological knot type \mathcal{K}
and its Bennequin number. The main theorem asserts that any \mathcal{TK} whose associated
\mathcal{K} satisfies a condition that we call exchange reducibility is
transversally simple.
¶ As a first application, we prove that the unlink is transversally simple, extending the
main theorem in [10]. As a second application we use a new theorem of Menasco [17] to
extend a result of Etnyre [11] to prove that all iterated torus knots are transversally
simple. We also give a formula for their maximum Bennequin number. We show that the
concept of exchange reducibility is the simplest of the constraints that one can place on
\mathcal{K} in order to prove that any associated \mathcal{TK} is transversally simple. We
also give examples of pairs of transversal knots that we conjecture are not
transversally simple. |
doi_str_mv | 10.4310/jdg/1090340880 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1090340880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4310_jdg_1090340880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-db15357f39b81d39a76511739dc4223834c490948eaee11a6302931b1fd5981f3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AURQdRMFa37oT8gbTvzZs0Mzsl-IWBLmyhuzCZmUhCmoSZKPTfW2lRcHXhwjlwL2O3CHNBCIvWfiwQFJAAKeGMRahEmmSCtucsAuA8AQHbS3YVQguAQnIZsbtVH6-97sOX80F33T5-b3Zj5-K3fpjCNbuodRfczSlnbPP0uM5fkmL1_Jo_FIkhElNiK0wpzWpSlURLSmfLFDEjZY3gnCQJIxQoIZ12DlEvCbgirLC2qZJY04zdH72jH1pnJvdpusaWo2922u_LQTdlvilO7SkOc8u_uQfF_KgwfgjBu_qXRih__vkPfAOx5lcn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Transversally Simple Knots</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Birman, Joan S. ; Wrinkle, Nancy C.</creator><creatorcontrib>Birman, Joan S. ; Wrinkle, Nancy C.</creatorcontrib><description>This paper studies knots that are transversal to the standard contact structure in
\mathbb{R}^3 bringing techniques from topological knot theory to bear on their
transversal classification. We say that a transversal knot type \mathcal{TK} is
transversally simple if it is determined by its topological knot type \mathcal{K}
and its Bennequin number. The main theorem asserts that any \mathcal{TK} whose associated
\mathcal{K} satisfies a condition that we call exchange reducibility is
transversally simple.
¶ As a first application, we prove that the unlink is transversally simple, extending the
main theorem in [10]. As a second application we use a new theorem of Menasco [17] to
extend a result of Etnyre [11] to prove that all iterated torus knots are transversally
simple. We also give a formula for their maximum Bennequin number. We show that the
concept of exchange reducibility is the simplest of the constraints that one can place on
\mathcal{K} in order to prove that any associated \mathcal{TK} is transversally simple. We
also give examples of pairs of transversal knots that we conjecture are not
transversally simple.</description><identifier>ISSN: 0022-040X</identifier><identifier>EISSN: 1945-743X</identifier><identifier>DOI: 10.4310/jdg/1090340880</identifier><language>eng</language><publisher>Lehigh University</publisher><ispartof>Journal of differential geometry, 2000-06, Vol.55 (2), p.325-354</ispartof><rights>Copyright 2000 Lehigh University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-db15357f39b81d39a76511739dc4223834c490948eaee11a6302931b1fd5981f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://projecteuclid.org/accountAjax/Download?downloadType=journal%20article&urlId=10.4310/jdg/1090340880&isResultClick=True$$EPDF$$P50$$Gprojecteuclid$$H</linktopdf><linktohtml>$$Uhttp://projecteuclid.org/euclid.jdg/1090340880$$EHTML$$P50$$Gprojecteuclid$$H</linktohtml><link.rule.ids>230,314,776,780,881,921,27901,27902,79752,79760</link.rule.ids></links><search><creatorcontrib>Birman, Joan S.</creatorcontrib><creatorcontrib>Wrinkle, Nancy C.</creatorcontrib><title>On Transversally Simple Knots</title><title>Journal of differential geometry</title><description>This paper studies knots that are transversal to the standard contact structure in
\mathbb{R}^3 bringing techniques from topological knot theory to bear on their
transversal classification. We say that a transversal knot type \mathcal{TK} is
transversally simple if it is determined by its topological knot type \mathcal{K}
and its Bennequin number. The main theorem asserts that any \mathcal{TK} whose associated
\mathcal{K} satisfies a condition that we call exchange reducibility is
transversally simple.
¶ As a first application, we prove that the unlink is transversally simple, extending the
main theorem in [10]. As a second application we use a new theorem of Menasco [17] to
extend a result of Etnyre [11] to prove that all iterated torus knots are transversally
simple. We also give a formula for their maximum Bennequin number. We show that the
concept of exchange reducibility is the simplest of the constraints that one can place on
\mathcal{K} in order to prove that any associated \mathcal{TK} is transversally simple. We
also give examples of pairs of transversal knots that we conjecture are not
transversally simple.</description><issn>0022-040X</issn><issn>1945-743X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AURQdRMFa37oT8gbTvzZs0Mzsl-IWBLmyhuzCZmUhCmoSZKPTfW2lRcHXhwjlwL2O3CHNBCIvWfiwQFJAAKeGMRahEmmSCtucsAuA8AQHbS3YVQguAQnIZsbtVH6-97sOX80F33T5-b3Zj5-K3fpjCNbuodRfczSlnbPP0uM5fkmL1_Jo_FIkhElNiK0wpzWpSlURLSmfLFDEjZY3gnCQJIxQoIZ12DlEvCbgirLC2qZJY04zdH72jH1pnJvdpusaWo2922u_LQTdlvilO7SkOc8u_uQfF_KgwfgjBu_qXRih__vkPfAOx5lcn</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Birman, Joan S.</creator><creator>Wrinkle, Nancy C.</creator><general>Lehigh University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000601</creationdate><title>On Transversally Simple Knots</title><author>Birman, Joan S. ; Wrinkle, Nancy C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-db15357f39b81d39a76511739dc4223834c490948eaee11a6302931b1fd5981f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birman, Joan S.</creatorcontrib><creatorcontrib>Wrinkle, Nancy C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of differential geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birman, Joan S.</au><au>Wrinkle, Nancy C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Transversally Simple Knots</atitle><jtitle>Journal of differential geometry</jtitle><date>2000-06-01</date><risdate>2000</risdate><volume>55</volume><issue>2</issue><spage>325</spage><epage>354</epage><pages>325-354</pages><issn>0022-040X</issn><eissn>1945-743X</eissn><abstract>This paper studies knots that are transversal to the standard contact structure in
\mathbb{R}^3 bringing techniques from topological knot theory to bear on their
transversal classification. We say that a transversal knot type \mathcal{TK} is
transversally simple if it is determined by its topological knot type \mathcal{K}
and its Bennequin number. The main theorem asserts that any \mathcal{TK} whose associated
\mathcal{K} satisfies a condition that we call exchange reducibility is
transversally simple.
¶ As a first application, we prove that the unlink is transversally simple, extending the
main theorem in [10]. As a second application we use a new theorem of Menasco [17] to
extend a result of Etnyre [11] to prove that all iterated torus knots are transversally
simple. We also give a formula for their maximum Bennequin number. We show that the
concept of exchange reducibility is the simplest of the constraints that one can place on
\mathcal{K} in order to prove that any associated \mathcal{TK} is transversally simple. We
also give examples of pairs of transversal knots that we conjecture are not
transversally simple.</abstract><pub>Lehigh University</pub><doi>10.4310/jdg/1090340880</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-040X |
ispartof | Journal of differential geometry, 2000-06, Vol.55 (2), p.325-354 |
issn | 0022-040X 1945-743X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jdg_1090340880 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
title | On Transversally Simple Knots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Transversally%20Simple%20Knots&rft.jtitle=Journal%20of%20differential%20geometry&rft.au=Birman,%20Joan%20S.&rft.date=2000-06-01&rft.volume=55&rft.issue=2&rft.spage=325&rft.epage=354&rft.pages=325-354&rft.issn=0022-040X&rft.eissn=1945-743X&rft_id=info:doi/10.4310/jdg/1090340880&rft_dat=%3Ccrossref_proje%3E10_4310_jdg_1090340880%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |