On the optimal stopping problems with monotone thresholds

As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2015-12, Vol.52 (4), p.926-940
1. Verfasser: Tamaki, Mitsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 4
container_start_page 926
container_title Journal of applied probability
container_volume 52
creator Tamaki, Mitsushi
description As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.
doi_str_mv 10.1239/jap/1450802744
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1450802744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1450802744</cupid><jstor_id>43860899</jstor_id><sourcerecordid>43860899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</originalsourceid><addsrcrecordid>eNptkctLxDAQxoMouD6u3oSCFy_dnbRpHjdl8QULe3HPpWmnuy1tU5MW8b83smUV9ZKByW---fKFkCsKcxrFalFn_YKyBCREgrEjMqNMJCEHER2TGUBEQ-XPU3LmXA3gSSVmRK27YNhhYPqharMmcIPp-6rbBr01usHWBe_VsAta05nBdOhZi25nmsJdkJMyaxxeTvWcbB4fXpfP4Wr99LK8X4V5LBIWSshiXoLQhdBlLIUQirOSUY5RjhKgBK2SQulIIpRSgZRKMEqRKkyk1iw-J3d7Xe-oxnzAMW-qIu2t92s_UpNV6XKzmrpT8VGk31F4iduDxNuIbkjbyuXYNFmHZnQpFZJHEAOXHr35hdZmtJ1_oKeSJAFQHDw131O5Nc5ZLA92KKRfn_HXwfV-oPYB2wPNYslBKuXvYRLMWm2rYos_9v4v-QkQp5TC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755500960</pqid></control><display><type>article</type><title>On the optimal stopping problems with monotone thresholds</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Tamaki, Mitsushi</creator><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1450802744</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G40 ; 62L15 ; best-choice duration problem ; best-choice problem ; Byproducts ; candidate-choice problem ; duration problem ; Expected values ; Mathematical analysis ; Mathematical problems ; monotone rule ; Optimization ; planar Poisson process ; Probability distribution ; Recall ; Research Papers ; Secretary problem ; Similarity ; Studies ; Thresholds</subject><ispartof>Journal of applied probability, 2015-12, Vol.52 (4), p.926-940</ispartof><rights>Copyright © Applied Probability Trust 2015</rights><rights>Copyright © 2015 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Dec 2015</rights><rights>Copyright 2015 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</citedby><cites>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43860899$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900200112999/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,803,832,885,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><title>On the optimal stopping problems with monotone thresholds</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><subject>60G40</subject><subject>62L15</subject><subject>best-choice duration problem</subject><subject>best-choice problem</subject><subject>Byproducts</subject><subject>candidate-choice problem</subject><subject>duration problem</subject><subject>Expected values</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>monotone rule</subject><subject>Optimization</subject><subject>planar Poisson process</subject><subject>Probability distribution</subject><subject>Recall</subject><subject>Research Papers</subject><subject>Secretary problem</subject><subject>Similarity</subject><subject>Studies</subject><subject>Thresholds</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkctLxDAQxoMouD6u3oSCFy_dnbRpHjdl8QULe3HPpWmnuy1tU5MW8b83smUV9ZKByW---fKFkCsKcxrFalFn_YKyBCREgrEjMqNMJCEHER2TGUBEQ-XPU3LmXA3gSSVmRK27YNhhYPqharMmcIPp-6rbBr01usHWBe_VsAta05nBdOhZi25nmsJdkJMyaxxeTvWcbB4fXpfP4Wr99LK8X4V5LBIWSshiXoLQhdBlLIUQirOSUY5RjhKgBK2SQulIIpRSgZRKMEqRKkyk1iw-J3d7Xe-oxnzAMW-qIu2t92s_UpNV6XKzmrpT8VGk31F4iduDxNuIbkjbyuXYNFmHZnQpFZJHEAOXHr35hdZmtJ1_oKeSJAFQHDw131O5Nc5ZLA92KKRfn_HXwfV-oPYB2wPNYslBKuXvYRLMWm2rYos_9v4v-QkQp5TC</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Tamaki, Mitsushi</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>On the optimal stopping problems with monotone thresholds</title><author>Tamaki, Mitsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60G40</topic><topic>62L15</topic><topic>best-choice duration problem</topic><topic>best-choice problem</topic><topic>Byproducts</topic><topic>candidate-choice problem</topic><topic>duration problem</topic><topic>Expected values</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>monotone rule</topic><topic>Optimization</topic><topic>planar Poisson process</topic><topic>Probability distribution</topic><topic>Recall</topic><topic>Research Papers</topic><topic>Secretary problem</topic><topic>Similarity</topic><topic>Studies</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Mitsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimal stopping problems with monotone thresholds</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>52</volume><issue>4</issue><spage>926</spage><epage>940</epage><pages>926-940</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1450802744</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2015-12, Vol.52 (4), p.926-940
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1450802744
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects 60G40
62L15
best-choice duration problem
best-choice problem
Byproducts
candidate-choice problem
duration problem
Expected values
Mathematical analysis
Mathematical problems
monotone rule
Optimization
planar Poisson process
Probability distribution
Recall
Research Papers
Secretary problem
Similarity
Studies
Thresholds
title On the optimal stopping problems with monotone thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimal%20stopping%20problems%20with%20monotone%20thresholds&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Tamaki,%20Mitsushi&rft.date=2015-12-01&rft.volume=52&rft.issue=4&rft.spage=926&rft.epage=940&rft.pages=926-940&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1450802744&rft_dat=%3Cjstor_proje%3E43860899%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755500960&rft_id=info:pmid/&rft_cupid=10_1239_jap_1450802744&rft_jstor_id=43860899&rfr_iscdi=true