On the optimal stopping problems with monotone thresholds
As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The rec...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2015-12, Vol.52 (4), p.926-940 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | 4 |
container_start_page | 926 |
container_title | Journal of applied probability |
container_volume | 52 |
creator | Tamaki, Mitsushi |
description | As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized. |
doi_str_mv | 10.1239/jap/1450802744 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1450802744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1450802744</cupid><jstor_id>43860899</jstor_id><sourcerecordid>43860899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</originalsourceid><addsrcrecordid>eNptkctLxDAQxoMouD6u3oSCFy_dnbRpHjdl8QULe3HPpWmnuy1tU5MW8b83smUV9ZKByW---fKFkCsKcxrFalFn_YKyBCREgrEjMqNMJCEHER2TGUBEQ-XPU3LmXA3gSSVmRK27YNhhYPqharMmcIPp-6rbBr01usHWBe_VsAta05nBdOhZi25nmsJdkJMyaxxeTvWcbB4fXpfP4Wr99LK8X4V5LBIWSshiXoLQhdBlLIUQirOSUY5RjhKgBK2SQulIIpRSgZRKMEqRKkyk1iw-J3d7Xe-oxnzAMW-qIu2t92s_UpNV6XKzmrpT8VGk31F4iduDxNuIbkjbyuXYNFmHZnQpFZJHEAOXHr35hdZmtJ1_oKeSJAFQHDw131O5Nc5ZLA92KKRfn_HXwfV-oPYB2wPNYslBKuXvYRLMWm2rYos_9v4v-QkQp5TC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755500960</pqid></control><display><type>article</type><title>On the optimal stopping problems with monotone thresholds</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Tamaki, Mitsushi</creator><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1450802744</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60G40 ; 62L15 ; best-choice duration problem ; best-choice problem ; Byproducts ; candidate-choice problem ; duration problem ; Expected values ; Mathematical analysis ; Mathematical problems ; monotone rule ; Optimization ; planar Poisson process ; Probability distribution ; Recall ; Research Papers ; Secretary problem ; Similarity ; Studies ; Thresholds</subject><ispartof>Journal of applied probability, 2015-12, Vol.52 (4), p.926-940</ispartof><rights>Copyright © Applied Probability Trust 2015</rights><rights>Copyright © 2015 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Dec 2015</rights><rights>Copyright 2015 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</citedby><cites>FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43860899$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900200112999/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,803,832,885,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><title>On the optimal stopping problems with monotone thresholds</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</description><subject>60G40</subject><subject>62L15</subject><subject>best-choice duration problem</subject><subject>best-choice problem</subject><subject>Byproducts</subject><subject>candidate-choice problem</subject><subject>duration problem</subject><subject>Expected values</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>monotone rule</subject><subject>Optimization</subject><subject>planar Poisson process</subject><subject>Probability distribution</subject><subject>Recall</subject><subject>Research Papers</subject><subject>Secretary problem</subject><subject>Similarity</subject><subject>Studies</subject><subject>Thresholds</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkctLxDAQxoMouD6u3oSCFy_dnbRpHjdl8QULe3HPpWmnuy1tU5MW8b83smUV9ZKByW---fKFkCsKcxrFalFn_YKyBCREgrEjMqNMJCEHER2TGUBEQ-XPU3LmXA3gSSVmRK27YNhhYPqharMmcIPp-6rbBr01usHWBe_VsAta05nBdOhZi25nmsJdkJMyaxxeTvWcbB4fXpfP4Wr99LK8X4V5LBIWSshiXoLQhdBlLIUQirOSUY5RjhKgBK2SQulIIpRSgZRKMEqRKkyk1iw-J3d7Xe-oxnzAMW-qIu2t92s_UpNV6XKzmrpT8VGk31F4iduDxNuIbkjbyuXYNFmHZnQpFZJHEAOXHr35hdZmtJ1_oKeSJAFQHDw131O5Nc5ZLA92KKRfn_HXwfV-oPYB2wPNYslBKuXvYRLMWm2rYos_9v4v-QkQp5TC</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Tamaki, Mitsushi</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>On the optimal stopping problems with monotone thresholds</title><author>Tamaki, Mitsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-80a36f07bd7bf38777964f416e2ce800f0b95d9b28e0f8908897411e19e58bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>60G40</topic><topic>62L15</topic><topic>best-choice duration problem</topic><topic>best-choice problem</topic><topic>Byproducts</topic><topic>candidate-choice problem</topic><topic>duration problem</topic><topic>Expected values</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>monotone rule</topic><topic>Optimization</topic><topic>planar Poisson process</topic><topic>Probability distribution</topic><topic>Recall</topic><topic>Research Papers</topic><topic>Secretary problem</topic><topic>Similarity</topic><topic>Studies</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Mitsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Mitsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the optimal stopping problems with monotone thresholds</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>52</volume><issue>4</issue><spage>926</spage><epage>940</epage><pages>926-940</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>As a class of optimal stopping problems with monotone thresholds, we define the candidate-choice problem (CCP) and derive two formulae for calculating its expected payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration problem treated by Ferguson et al. (1992). The recall case is also examined as a comparison. We also derive the distribution of the stopping time of the CCP and find, as a by-product, that the best-choice problem has a remarkable feature in that the optimal probability of choosing the best is just the expected value of the (proportional) stopping time. The similarity between the best-choice duration problem and the best-choice problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1450802744</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2015-12, Vol.52 (4), p.926-940 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1450802744 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | 60G40 62L15 best-choice duration problem best-choice problem Byproducts candidate-choice problem duration problem Expected values Mathematical analysis Mathematical problems monotone rule Optimization planar Poisson process Probability distribution Recall Research Papers Secretary problem Similarity Studies Thresholds |
title | On the optimal stopping problems with monotone thresholds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20optimal%20stopping%20problems%20with%20monotone%20thresholds&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Tamaki,%20Mitsushi&rft.date=2015-12-01&rft.volume=52&rft.issue=4&rft.spage=926&rft.epage=940&rft.pages=926-940&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1450802744&rft_dat=%3Cjstor_proje%3E43860899%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755500960&rft_id=info:pmid/&rft_cupid=10_1239_jap_1450802744&rft_jstor_id=43860899&rfr_iscdi=true |