Joint Distributions of Counts of Strings in Finite Bernoulli Sequences

An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2012-09, Vol.49 (3), p.758-772
Hauptverfasser: Huffer, Fred W., Sethuraman, Jayaram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 3
container_start_page 758
container_title Journal of applied probability
container_volume 49
creator Huffer, Fred W.
Sethuraman, Jayaram
description An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z 1, Z 2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y 1, Y 2,…, Y n ) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z 1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.
doi_str_mv 10.1239/jap/1346955332
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1346955332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1346955332</cupid><jstor_id>41713804</jstor_id><sourcerecordid>41713804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</originalsourceid><addsrcrecordid>eNptkbtPwzAQxi0EEqWwsiFFYmFJa8ePNBsQKA9VYiido_iRylFqF9sZ-O8xNCoIWHzW3c_ffXcG4BzBCcpwMW3r7RRhwgpKMc4OwAiRnKYM5tkhGEGYobSI5zE48b6FEBFa5CMwf7bahORO--A074O2xie2SUrbm_B1W8aCWftEm2SujQ4quVXO2L7rdLJUb70yQvlTcNTUnVdnQxyD1fz-tXxMFy8PT-XNIhWEwZBSwYsCKskxwVBxDCWBGcWsIBIzLJUguSyoaKgUNENEYSYFn3HMo3ORYY7H4Hqnu3W2VSKoXnRaVlunN7V7r2ytq3K1GLJDiHupvvcSJa72EtG9D9VGe6G6rjbK9r5CLEeYzmY5i-jlL7S1vTNxwApBgjJI41SRmuwo4az3TjV7OwhWnz_z18HF7kHrg3V7mqDYeAZJrMNBsN5wp-Va_ez7r-QHVgqZ4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041205460</pqid></control><display><type>article</type><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Huffer, Fred W. ; Sethuraman, Jayaram</creator><creatorcontrib>Huffer, Fred W. ; Sethuraman, Jayaram</creatorcontrib><description>An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a &gt; 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z 1, Z 2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y 1, Y 2,…, Y n ) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z 1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1346955332</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60C05 ; 60K99 ; Bernoulli Hypothesis ; Bernoulli sequence ; Combinatorial analysis ; Combinatorial permutations ; Conditional marked Poisson process ; Conditioning ; Construction cranes ; Counting ; counts of strings ; cycles ; Factorials ; flaws and failures ; Generating function ; Integers ; Mathematical analysis ; Mathematical moments ; Mathematical sequences ; Poisson distribution ; Poisson process ; Power series ; random permutation ; Random variables ; Strings ; Studies ; Vectors (mathematics)</subject><ispartof>Journal of applied probability, 2012-09, Vol.49 (3), p.758-772</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © 2012 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2012</rights><rights>Copyright 2012 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</citedby><cites>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713804$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900200009529/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,803,832,885,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Huffer, Fred W.</creatorcontrib><creatorcontrib>Sethuraman, Jayaram</creatorcontrib><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a &gt; 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z 1, Z 2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y 1, Y 2,…, Y n ) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z 1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</description><subject>60C05</subject><subject>60K99</subject><subject>Bernoulli Hypothesis</subject><subject>Bernoulli sequence</subject><subject>Combinatorial analysis</subject><subject>Combinatorial permutations</subject><subject>Conditional marked Poisson process</subject><subject>Conditioning</subject><subject>Construction cranes</subject><subject>Counting</subject><subject>counts of strings</subject><subject>cycles</subject><subject>Factorials</subject><subject>flaws and failures</subject><subject>Generating function</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical moments</subject><subject>Mathematical sequences</subject><subject>Poisson distribution</subject><subject>Poisson process</subject><subject>Power series</subject><subject>random permutation</subject><subject>Random variables</subject><subject>Strings</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkbtPwzAQxi0EEqWwsiFFYmFJa8ePNBsQKA9VYiido_iRylFqF9sZ-O8xNCoIWHzW3c_ffXcG4BzBCcpwMW3r7RRhwgpKMc4OwAiRnKYM5tkhGEGYobSI5zE48b6FEBFa5CMwf7bahORO--A074O2xie2SUrbm_B1W8aCWftEm2SujQ4quVXO2L7rdLJUb70yQvlTcNTUnVdnQxyD1fz-tXxMFy8PT-XNIhWEwZBSwYsCKskxwVBxDCWBGcWsIBIzLJUguSyoaKgUNENEYSYFn3HMo3ORYY7H4Hqnu3W2VSKoXnRaVlunN7V7r2ytq3K1GLJDiHupvvcSJa72EtG9D9VGe6G6rjbK9r5CLEeYzmY5i-jlL7S1vTNxwApBgjJI41SRmuwo4az3TjV7OwhWnz_z18HF7kHrg3V7mqDYeAZJrMNBsN5wp-Va_ez7r-QHVgqZ4w</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Huffer, Fred W.</creator><creator>Sethuraman, Jayaram</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><author>Huffer, Fred W. ; Sethuraman, Jayaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>60C05</topic><topic>60K99</topic><topic>Bernoulli Hypothesis</topic><topic>Bernoulli sequence</topic><topic>Combinatorial analysis</topic><topic>Combinatorial permutations</topic><topic>Conditional marked Poisson process</topic><topic>Conditioning</topic><topic>Construction cranes</topic><topic>Counting</topic><topic>counts of strings</topic><topic>cycles</topic><topic>Factorials</topic><topic>flaws and failures</topic><topic>Generating function</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical moments</topic><topic>Mathematical sequences</topic><topic>Poisson distribution</topic><topic>Poisson process</topic><topic>Power series</topic><topic>random permutation</topic><topic>Random variables</topic><topic>Strings</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huffer, Fred W.</creatorcontrib><creatorcontrib>Sethuraman, Jayaram</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huffer, Fred W.</au><au>Sethuraman, Jayaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>49</volume><issue>3</issue><spage>758</spage><epage>772</epage><pages>758-772</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a &gt; 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z 1, Z 2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y 1, Y 2,…, Y n ) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z 1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1346955332</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2012-09, Vol.49 (3), p.758-772
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1346955332
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects 60C05
60K99
Bernoulli Hypothesis
Bernoulli sequence
Combinatorial analysis
Combinatorial permutations
Conditional marked Poisson process
Conditioning
Construction cranes
Counting
counts of strings
cycles
Factorials
flaws and failures
Generating function
Integers
Mathematical analysis
Mathematical moments
Mathematical sequences
Poisson distribution
Poisson process
Power series
random permutation
Random variables
Strings
Studies
Vectors (mathematics)
title Joint Distributions of Counts of Strings in Finite Bernoulli Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Distributions%20of%20Counts%20of%20Strings%20in%20Finite%20Bernoulli%20Sequences&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Huffer,%20Fred%20W.&rft.date=2012-09-01&rft.volume=49&rft.issue=3&rft.spage=758&rft.epage=772&rft.pages=758-772&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1346955332&rft_dat=%3Cjstor_proje%3E41713804%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041205460&rft_id=info:pmid/&rft_cupid=10_1239_jap_1346955332&rft_jstor_id=41713804&rfr_iscdi=true