Joint Distributions of Counts of Strings in Finite Bernoulli Sequences
An infinite sequence (Y 1, Y 2,…) of independent Bernoulli random variables with P(Y i = 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z 1, Z 2, Z 3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…,...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2012-09, Vol.49 (3), p.758-772 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 3 |
container_start_page | 758 |
container_title | Journal of applied probability |
container_volume | 49 |
creator | Huffer, Fred W. Sethuraman, Jayaram |
description | An infinite sequence (Y
1, Y
2,…) of independent Bernoulli random variables with P(Y
i
= 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z
1, Z
2, Z
3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z
1, Z
2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y
1, Y
2,…, Y
n
) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z
1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments. |
doi_str_mv | 10.1239/jap/1346955332 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1346955332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1346955332</cupid><jstor_id>41713804</jstor_id><sourcerecordid>41713804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</originalsourceid><addsrcrecordid>eNptkbtPwzAQxi0EEqWwsiFFYmFJa8ePNBsQKA9VYiido_iRylFqF9sZ-O8xNCoIWHzW3c_ffXcG4BzBCcpwMW3r7RRhwgpKMc4OwAiRnKYM5tkhGEGYobSI5zE48b6FEBFa5CMwf7bahORO--A074O2xie2SUrbm_B1W8aCWftEm2SujQ4quVXO2L7rdLJUb70yQvlTcNTUnVdnQxyD1fz-tXxMFy8PT-XNIhWEwZBSwYsCKskxwVBxDCWBGcWsIBIzLJUguSyoaKgUNENEYSYFn3HMo3ORYY7H4Hqnu3W2VSKoXnRaVlunN7V7r2ytq3K1GLJDiHupvvcSJa72EtG9D9VGe6G6rjbK9r5CLEeYzmY5i-jlL7S1vTNxwApBgjJI41SRmuwo4az3TjV7OwhWnz_z18HF7kHrg3V7mqDYeAZJrMNBsN5wp-Va_ez7r-QHVgqZ4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1041205460</pqid></control><display><type>article</type><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Huffer, Fred W. ; Sethuraman, Jayaram</creator><creatorcontrib>Huffer, Fred W. ; Sethuraman, Jayaram</creatorcontrib><description>An infinite sequence (Y
1, Y
2,…) of independent Bernoulli random variables with P(Y
i
= 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z
1, Z
2, Z
3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z
1, Z
2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y
1, Y
2,…, Y
n
) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z
1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1346955332</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60C05 ; 60K99 ; Bernoulli Hypothesis ; Bernoulli sequence ; Combinatorial analysis ; Combinatorial permutations ; Conditional marked Poisson process ; Conditioning ; Construction cranes ; Counting ; counts of strings ; cycles ; Factorials ; flaws and failures ; Generating function ; Integers ; Mathematical analysis ; Mathematical moments ; Mathematical sequences ; Poisson distribution ; Poisson process ; Power series ; random permutation ; Random variables ; Strings ; Studies ; Vectors (mathematics)</subject><ispartof>Journal of applied probability, 2012-09, Vol.49 (3), p.758-772</ispartof><rights>Applied Probability Trust</rights><rights>Copyright © 2012 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2012</rights><rights>Copyright 2012 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</citedby><cites>FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713804$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900200009529/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,803,832,885,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Huffer, Fred W.</creatorcontrib><creatorcontrib>Sethuraman, Jayaram</creatorcontrib><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>An infinite sequence (Y
1, Y
2,…) of independent Bernoulli random variables with P(Y
i
= 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z
1, Z
2, Z
3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z
1, Z
2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y
1, Y
2,…, Y
n
) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z
1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</description><subject>60C05</subject><subject>60K99</subject><subject>Bernoulli Hypothesis</subject><subject>Bernoulli sequence</subject><subject>Combinatorial analysis</subject><subject>Combinatorial permutations</subject><subject>Conditional marked Poisson process</subject><subject>Conditioning</subject><subject>Construction cranes</subject><subject>Counting</subject><subject>counts of strings</subject><subject>cycles</subject><subject>Factorials</subject><subject>flaws and failures</subject><subject>Generating function</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical moments</subject><subject>Mathematical sequences</subject><subject>Poisson distribution</subject><subject>Poisson process</subject><subject>Power series</subject><subject>random permutation</subject><subject>Random variables</subject><subject>Strings</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkbtPwzAQxi0EEqWwsiFFYmFJa8ePNBsQKA9VYiido_iRylFqF9sZ-O8xNCoIWHzW3c_ffXcG4BzBCcpwMW3r7RRhwgpKMc4OwAiRnKYM5tkhGEGYobSI5zE48b6FEBFa5CMwf7bahORO--A074O2xie2SUrbm_B1W8aCWftEm2SujQ4quVXO2L7rdLJUb70yQvlTcNTUnVdnQxyD1fz-tXxMFy8PT-XNIhWEwZBSwYsCKskxwVBxDCWBGcWsIBIzLJUguSyoaKgUNENEYSYFn3HMo3ORYY7H4Hqnu3W2VSKoXnRaVlunN7V7r2ytq3K1GLJDiHupvvcSJa72EtG9D9VGe6G6rjbK9r5CLEeYzmY5i-jlL7S1vTNxwApBgjJI41SRmuwo4az3TjV7OwhWnz_z18HF7kHrg3V7mqDYeAZJrMNBsN5wp-Va_ez7r-QHVgqZ4w</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Huffer, Fred W.</creator><creator>Sethuraman, Jayaram</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</title><author>Huffer, Fred W. ; Sethuraman, Jayaram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5cb990edb3430eb30d40253694d363dec47d95cf5dc5214e36dcb8b3b900c23b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>60C05</topic><topic>60K99</topic><topic>Bernoulli Hypothesis</topic><topic>Bernoulli sequence</topic><topic>Combinatorial analysis</topic><topic>Combinatorial permutations</topic><topic>Conditional marked Poisson process</topic><topic>Conditioning</topic><topic>Construction cranes</topic><topic>Counting</topic><topic>counts of strings</topic><topic>cycles</topic><topic>Factorials</topic><topic>flaws and failures</topic><topic>Generating function</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical moments</topic><topic>Mathematical sequences</topic><topic>Poisson distribution</topic><topic>Poisson process</topic><topic>Power series</topic><topic>random permutation</topic><topic>Random variables</topic><topic>Strings</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huffer, Fred W.</creatorcontrib><creatorcontrib>Sethuraman, Jayaram</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huffer, Fred W.</au><au>Sethuraman, Jayaram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Distributions of Counts of Strings in Finite Bernoulli Sequences</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>49</volume><issue>3</issue><spage>758</spage><epage>772</epage><pages>758-772</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>An infinite sequence (Y
1, Y
2,…) of independent Bernoulli random variables with P(Y
i
= 1) = a / (a + b + i - 1), i = 1, 2,…, where a > 0 and b ≥ 0, will be called a Bern(a, b) sequence. Consider the counts Z
1, Z
2, Z
3,… of occurrences of patterns or strings of the form {11}, {101}, {1001},…, respectively, in this sequence. The joint distribution of the counts Z
1, Z
2,… in the infinite Bern(a, b) sequence has been studied extensively. The counts from the initial finite sequence (Y
1, Y
2,…, Y
n
) have been studied by Holst (2007), (2008b), who obtained the joint factorial moments for Bern(a, 0) and the factorial moments of Z
1, the count of the string {1, 1}, for a general Bern(a, b). We consider stopping the Bernoulli sequence at a random time and describe the joint distribution of counts, which extends Holst's results. We show that the joint distribution of counts from a class of randomly stopped Bernoulli sequences possesses the mixture of independent Poissons property: there is a random vector conditioned on which the counts are independent Poissons. To obtain these results, we extend the conditional marked Poisson process technique introduced in Huffer, Sethuraman and Sethuraman (2009). Our results avoid previous combinatorial and induction methods which generally only yield factorial moments.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1346955332</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2012-09, Vol.49 (3), p.758-772 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1346955332 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | 60C05 60K99 Bernoulli Hypothesis Bernoulli sequence Combinatorial analysis Combinatorial permutations Conditional marked Poisson process Conditioning Construction cranes Counting counts of strings cycles Factorials flaws and failures Generating function Integers Mathematical analysis Mathematical moments Mathematical sequences Poisson distribution Poisson process Power series random permutation Random variables Strings Studies Vectors (mathematics) |
title | Joint Distributions of Counts of Strings in Finite Bernoulli Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Distributions%20of%20Counts%20of%20Strings%20in%20Finite%20Bernoulli%20Sequences&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Huffer,%20Fred%20W.&rft.date=2012-09-01&rft.volume=49&rft.issue=3&rft.spage=758&rft.epage=772&rft.pages=758-772&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1346955332&rft_dat=%3Cjstor_proje%3E41713804%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1041205460&rft_id=info:pmid/&rft_cupid=10_1239_jap_1346955332&rft_jstor_id=41713804&rfr_iscdi=true |