The Critical Galton-Watson Process Without Further Power Moments

In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2007-09, Vol.44 (3), p.753-769
Hauptverfasser: Nagaev, S. V., Wachtel, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue 3
container_start_page 753
container_title Journal of applied probability
container_volume 44
creator Nagaev, S. V.
Wachtel, V.
description In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.
doi_str_mv 10.1239/jap/1189717543
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1189717543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1189717543</cupid><jstor_id>27595880</jstor_id><sourcerecordid>27595880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-548225f8ec872b9679d1463d906bf310a1c262e983b04bb5fdd84232ba54d26f3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFav3oTgPe1-ZndvlWCrULGHlh7DZrOxCWm27m4Q_3sjDe1BvMzAzJvfGx4A9whOECZyWqvDFCEhOeKMkgswQpSzOIEcX4IRhBjFsq_X4Mb7GkJEmeQjMFvvTJS6KlRaNdFCNcG28VYFb9to5aw23kfbKuxsF6J558LOuGhlv_r6ZvemDf4WXJWq8eZu6GOwmT-v05d4-b54TZ-WsaY4CTGjAmNWCqMFx7lMuCwQTUghYZKXBEGFNE6wkYLkkOY5K4tCUExwrhgtcFKSMZgduQdna6OD6XRTFdnBVXvlvjOrqizdLIfp0PpEsnMiPeLxhPjsjA9ZbTvX9l9nmFAJsWCyF02OIu2s986UJwsEs9-c_1Ifjge1D9ad1JgzyYSA_R4OQLXPXVV8mLPtP8gf36eJHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234902859</pqid></control><display><type>article</type><title>The Critical Galton-Watson Process Without Further Power Moments</title><source>Cambridge Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nagaev, S. V. ; Wachtel, V.</creator><creatorcontrib>Nagaev, S. V. ; Wachtel, V.</creatorcontrib><description>In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1189717543</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60F05 ; 60J80 ; Asymptotic methods ; conditional theorem ; Critical Galton-Watson process ; Distribution functions ; Generating function ; Logarithms ; Mathematical functions ; Mathematical theorems ; Probability ; Random variables ; slowly varying function ; Stochastic models ; Studies</subject><ispartof>Journal of applied probability, 2007-09, Vol.44 (3), p.753-769</ispartof><rights>Copyright © Applied Probability Trust 2007</rights><rights>Copyright 2007 Applied Probability Trust</rights><rights>Copyright Applied Probability Trust Sep 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-548225f8ec872b9679d1463d906bf310a1c262e983b04bb5fdd84232ba54d26f3</citedby><cites>FETCH-LOGICAL-c426t-548225f8ec872b9679d1463d906bf310a1c262e983b04bb5fdd84232ba54d26f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27595880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900200003417/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,803,832,885,27923,27924,55627,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Nagaev, S. V.</creatorcontrib><creatorcontrib>Wachtel, V.</creatorcontrib><title>The Critical Galton-Watson Process Without Further Power Moments</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.</description><subject>60F05</subject><subject>60J80</subject><subject>Asymptotic methods</subject><subject>conditional theorem</subject><subject>Critical Galton-Watson process</subject><subject>Distribution functions</subject><subject>Generating function</subject><subject>Logarithms</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Probability</subject><subject>Random variables</subject><subject>slowly varying function</subject><subject>Stochastic models</subject><subject>Studies</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFav3oTgPe1-ZndvlWCrULGHlh7DZrOxCWm27m4Q_3sjDe1BvMzAzJvfGx4A9whOECZyWqvDFCEhOeKMkgswQpSzOIEcX4IRhBjFsq_X4Mb7GkJEmeQjMFvvTJS6KlRaNdFCNcG28VYFb9to5aw23kfbKuxsF6J558LOuGhlv_r6ZvemDf4WXJWq8eZu6GOwmT-v05d4-b54TZ-WsaY4CTGjAmNWCqMFx7lMuCwQTUghYZKXBEGFNE6wkYLkkOY5K4tCUExwrhgtcFKSMZgduQdna6OD6XRTFdnBVXvlvjOrqizdLIfp0PpEsnMiPeLxhPjsjA9ZbTvX9l9nmFAJsWCyF02OIu2s986UJwsEs9-c_1Ifjge1D9ad1JgzyYSA_R4OQLXPXVV8mLPtP8gf36eJHQ</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Nagaev, S. V.</creator><creator>Wachtel, V.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070901</creationdate><title>The Critical Galton-Watson Process Without Further Power Moments</title><author>Nagaev, S. V. ; Wachtel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-548225f8ec872b9679d1463d906bf310a1c262e983b04bb5fdd84232ba54d26f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>60F05</topic><topic>60J80</topic><topic>Asymptotic methods</topic><topic>conditional theorem</topic><topic>Critical Galton-Watson process</topic><topic>Distribution functions</topic><topic>Generating function</topic><topic>Logarithms</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Probability</topic><topic>Random variables</topic><topic>slowly varying function</topic><topic>Stochastic models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaev, S. V.</creatorcontrib><creatorcontrib>Wachtel, V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaev, S. V.</au><au>Wachtel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Critical Galton-Watson Process Without Further Power Moments</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>44</volume><issue>3</issue><spage>753</spage><epage>769</epage><pages>753-769</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Z n ; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1189717543</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2007-09, Vol.44 (3), p.753-769
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1189717543
source Cambridge Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 60F05
60J80
Asymptotic methods
conditional theorem
Critical Galton-Watson process
Distribution functions
Generating function
Logarithms
Mathematical functions
Mathematical theorems
Probability
Random variables
slowly varying function
Stochastic models
Studies
title The Critical Galton-Watson Process Without Further Power Moments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Critical%20Galton-Watson%20Process%20Without%20Further%20Power%20Moments&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Nagaev,%20S.%20V.&rft.date=2007-09-01&rft.volume=44&rft.issue=3&rft.spage=753&rft.epage=769&rft.pages=753-769&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1189717543&rft_dat=%3Cjstor_proje%3E27595880%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234902859&rft_id=info:pmid/&rft_cupid=10_1239_jap_1189717543&rft_jstor_id=27595880&rfr_iscdi=true