Convolution equivalence and infinite divisibility
Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the sum...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2004-06, Vol.41 (2), p.407-424 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 424 |
---|---|
container_issue | 2 |
container_start_page | 407 |
container_title | Journal of applied probability |
container_volume | 41 |
creator | Pakes, Anthony G. |
description | Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution. |
doi_str_mv | 10.1239/jap/1082999075 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1082999075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1082999075</cupid><jstor_id>3216025</jstor_id><sourcerecordid>3216025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</originalsourceid><addsrcrecordid>eNp1kDtrwzAUhUVpoWnatVOHUOjoRJJlydpaTF8Q6NLMRs8i40iJZAfy7-sQkwyliy7onvudwwHgHsE5wjlfNGKzQLDEnHPIigswQYQVGYUMX4IJhBhlfHivwU1KDYSIFJxNAKqC34W271zwM7Pt3U60xiszE17PnLfOu87MtNu55KRrXbe_BVdWtMncjXMKVm-v39VHtvx6_6xelpkijHcZ1VIqa40uaV6aUkppSmQ5VIZiYpSGpSJE0yGwKCSyAglldSktIQjmVBb5FDwfuZsYGqM606vW6XoT3VrEfR2Eq6vVcvwdx1BBfa5gQDyeENvepK5uQh_9kLrGOeEQM8YG0fwoUjGkFI09WSBYH4r9S30aqSIp0doovHLpfFVwijiBg-7hqGtSF-Jpn2NEIT5g4Ogr1jI6_WPO6f5x_gX8HpML</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234902777</pqid></control><display><type>article</type><title>Convolution equivalence and infinite divisibility</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Pakes, Anthony G.</creator><creatorcontrib>Pakes, Anthony G.</creatorcontrib><description>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1082999075</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60E07 ; 60F99 ; Clines ; convolution equivalence ; Density ; Distribution functions ; Distribution theory ; Division ; Equivalence relation ; Exact sciences and technology ; infinite divisibility ; Infinity ; Mathematical models ; Mathematical theorems ; Mathematics ; Poisson distribution ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; random sum ; Random variables ; Real lines ; Research Papers ; Sciences and techniques of general use ; Studies ; Subexponential distribution ; tail equivalence</subject><ispartof>Journal of applied probability, 2004-06, Vol.41 (2), p.407-424</ispartof><rights>Copyright © Applied Probability Trust 2004</rights><rights>Copyright 2004 Applied Probability Trust</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Applied Probability Trust Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</citedby><cites>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3216025$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3216025$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15961940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pakes, Anthony G.</creatorcontrib><title>Convolution equivalence and infinite divisibility</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</description><subject>60E07</subject><subject>60F99</subject><subject>Clines</subject><subject>convolution equivalence</subject><subject>Density</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Division</subject><subject>Equivalence relation</subject><subject>Exact sciences and technology</subject><subject>infinite divisibility</subject><subject>Infinity</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Poisson distribution</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>random sum</subject><subject>Random variables</subject><subject>Real lines</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Subexponential distribution</subject><subject>tail equivalence</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrwzAUhUVpoWnatVOHUOjoRJJlydpaTF8Q6NLMRs8i40iJZAfy7-sQkwyliy7onvudwwHgHsE5wjlfNGKzQLDEnHPIigswQYQVGYUMX4IJhBhlfHivwU1KDYSIFJxNAKqC34W271zwM7Pt3U60xiszE17PnLfOu87MtNu55KRrXbe_BVdWtMncjXMKVm-v39VHtvx6_6xelpkijHcZ1VIqa40uaV6aUkppSmQ5VIZiYpSGpSJE0yGwKCSyAglldSktIQjmVBb5FDwfuZsYGqM606vW6XoT3VrEfR2Eq6vVcvwdx1BBfa5gQDyeENvepK5uQh_9kLrGOeEQM8YG0fwoUjGkFI09WSBYH4r9S30aqSIp0doovHLpfFVwijiBg-7hqGtSF-Jpn2NEIT5g4Ogr1jI6_WPO6f5x_gX8HpML</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Pakes, Anthony G.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040601</creationdate><title>Convolution equivalence and infinite divisibility</title><author>Pakes, Anthony G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60E07</topic><topic>60F99</topic><topic>Clines</topic><topic>convolution equivalence</topic><topic>Density</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Division</topic><topic>Equivalence relation</topic><topic>Exact sciences and technology</topic><topic>infinite divisibility</topic><topic>Infinity</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Poisson distribution</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>random sum</topic><topic>Random variables</topic><topic>Real lines</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Subexponential distribution</topic><topic>tail equivalence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakes, Anthony G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakes, Anthony G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution equivalence and infinite divisibility</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>41</volume><issue>2</issue><spage>407</spage><epage>424</epage><pages>407-424</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1082999075</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2004-06, Vol.41 (2), p.407-424 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1082999075 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | 60E07 60F99 Clines convolution equivalence Density Distribution functions Distribution theory Division Equivalence relation Exact sciences and technology infinite divisibility Infinity Mathematical models Mathematical theorems Mathematics Poisson distribution Probability Probability and statistics Probability theory and stochastic processes random sum Random variables Real lines Research Papers Sciences and techniques of general use Studies Subexponential distribution tail equivalence |
title | Convolution equivalence and infinite divisibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20equivalence%20and%20infinite%20divisibility&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pakes,%20Anthony%20G.&rft.date=2004-06-01&rft.volume=41&rft.issue=2&rft.spage=407&rft.epage=424&rft.pages=407-424&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1082999075&rft_dat=%3Cjstor_proje%3E3216025%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234902777&rft_id=info:pmid/&rft_cupid=10_1239_jap_1082999075&rft_jstor_id=3216025&rfr_iscdi=true |