Convolution equivalence and infinite divisibility

Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the sum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2004-06, Vol.41 (2), p.407-424
1. Verfasser: Pakes, Anthony G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 2
container_start_page 407
container_title Journal of applied probability
container_volume 41
creator Pakes, Anthony G.
description Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.
doi_str_mv 10.1239/jap/1082999075
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1082999075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1082999075</cupid><jstor_id>3216025</jstor_id><sourcerecordid>3216025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</originalsourceid><addsrcrecordid>eNp1kDtrwzAUhUVpoWnatVOHUOjoRJJlydpaTF8Q6NLMRs8i40iJZAfy7-sQkwyliy7onvudwwHgHsE5wjlfNGKzQLDEnHPIigswQYQVGYUMX4IJhBhlfHivwU1KDYSIFJxNAKqC34W271zwM7Pt3U60xiszE17PnLfOu87MtNu55KRrXbe_BVdWtMncjXMKVm-v39VHtvx6_6xelpkijHcZ1VIqa40uaV6aUkppSmQ5VIZiYpSGpSJE0yGwKCSyAglldSktIQjmVBb5FDwfuZsYGqM606vW6XoT3VrEfR2Eq6vVcvwdx1BBfa5gQDyeENvepK5uQh_9kLrGOeEQM8YG0fwoUjGkFI09WSBYH4r9S30aqSIp0doovHLpfFVwijiBg-7hqGtSF-Jpn2NEIT5g4Ogr1jI6_WPO6f5x_gX8HpML</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234902777</pqid></control><display><type>article</type><title>Convolution equivalence and infinite divisibility</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Pakes, Anthony G.</creator><creatorcontrib>Pakes, Anthony G.</creatorcontrib><description>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1082999075</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60E07 ; 60F99 ; Clines ; convolution equivalence ; Density ; Distribution functions ; Distribution theory ; Division ; Equivalence relation ; Exact sciences and technology ; infinite divisibility ; Infinity ; Mathematical models ; Mathematical theorems ; Mathematics ; Poisson distribution ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; random sum ; Random variables ; Real lines ; Research Papers ; Sciences and techniques of general use ; Studies ; Subexponential distribution ; tail equivalence</subject><ispartof>Journal of applied probability, 2004-06, Vol.41 (2), p.407-424</ispartof><rights>Copyright © Applied Probability Trust 2004</rights><rights>Copyright 2004 Applied Probability Trust</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Applied Probability Trust Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</citedby><cites>FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3216025$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3216025$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15961940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pakes, Anthony G.</creatorcontrib><title>Convolution equivalence and infinite divisibility</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</description><subject>60E07</subject><subject>60F99</subject><subject>Clines</subject><subject>convolution equivalence</subject><subject>Density</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Division</subject><subject>Equivalence relation</subject><subject>Exact sciences and technology</subject><subject>infinite divisibility</subject><subject>Infinity</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Poisson distribution</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>random sum</subject><subject>Random variables</subject><subject>Real lines</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Subexponential distribution</subject><subject>tail equivalence</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrwzAUhUVpoWnatVOHUOjoRJJlydpaTF8Q6NLMRs8i40iJZAfy7-sQkwyliy7onvudwwHgHsE5wjlfNGKzQLDEnHPIigswQYQVGYUMX4IJhBhlfHivwU1KDYSIFJxNAKqC34W271zwM7Pt3U60xiszE17PnLfOu87MtNu55KRrXbe_BVdWtMncjXMKVm-v39VHtvx6_6xelpkijHcZ1VIqa40uaV6aUkppSmQ5VIZiYpSGpSJE0yGwKCSyAglldSktIQjmVBb5FDwfuZsYGqM606vW6XoT3VrEfR2Eq6vVcvwdx1BBfa5gQDyeENvepK5uQh_9kLrGOeEQM8YG0fwoUjGkFI09WSBYH4r9S30aqSIp0doovHLpfFVwijiBg-7hqGtSF-Jpn2NEIT5g4Ogr1jI6_WPO6f5x_gX8HpML</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Pakes, Anthony G.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040601</creationdate><title>Convolution equivalence and infinite divisibility</title><author>Pakes, Anthony G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-6dbbcffed8638e8bbbe81f90ce624ecd08c44d6108a5b1fa1acfd8bf441036b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60E07</topic><topic>60F99</topic><topic>Clines</topic><topic>convolution equivalence</topic><topic>Density</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Division</topic><topic>Equivalence relation</topic><topic>Exact sciences and technology</topic><topic>infinite divisibility</topic><topic>Infinity</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Poisson distribution</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>random sum</topic><topic>Random variables</topic><topic>Real lines</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Subexponential distribution</topic><topic>tail equivalence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pakes, Anthony G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pakes, Anthony G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution equivalence and infinite divisibility</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>41</volume><issue>2</issue><spage>407</spage><epage>424</epage><pages>407-424</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1082999075</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2004-06, Vol.41 (2), p.407-424
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1082999075
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects 60E07
60F99
Clines
convolution equivalence
Density
Distribution functions
Distribution theory
Division
Equivalence relation
Exact sciences and technology
infinite divisibility
Infinity
Mathematical models
Mathematical theorems
Mathematics
Poisson distribution
Probability
Probability and statistics
Probability theory and stochastic processes
random sum
Random variables
Real lines
Research Papers
Sciences and techniques of general use
Studies
Subexponential distribution
tail equivalence
title Convolution equivalence and infinite divisibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20equivalence%20and%20infinite%20divisibility&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Pakes,%20Anthony%20G.&rft.date=2004-06-01&rft.volume=41&rft.issue=2&rft.spage=407&rft.epage=424&rft.pages=407-424&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1082999075&rft_dat=%3Cjstor_proje%3E3216025%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234902777&rft_id=info:pmid/&rft_cupid=10_1239_jap_1082999075&rft_jstor_id=3216025&rfr_iscdi=true