An iterative approximation scheme for repetitive Markov processes

Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1999-09, Vol.36 (3), p.654-667
Hauptverfasser: Tufecki, Tolga, Gullu, Refik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 3
container_start_page 654
container_title Journal of applied probability
container_volume 36
creator Tufecki, Tolga
Gullu, Refik
description Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative scheme is proposed for computing the stationary probabilities of such processes. An infinite state process is approximated by a finite state process by lumping an infinite number of states into a super-state. What we call the feedback rate, the conditional expected rate of flow from the super-state to the remaining states, given the process is in the super-state, is approximated simultaneously with the steady state probabilities. The method is theoretically developed and numerically tested for quasi-birth-and-death processes. It turns out that the new concept of the feedback rate can be effectively used in computing the stationary probabilities.
doi_str_mv 10.1239/jap/1032374624
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1032374624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1239_jap_1032374624</cupid><jstor_id>3215431</jstor_id><sourcerecordid>3215431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fa53fb3aafce562c212267a78ee96050b944bb61af8d067c703524bd5cec9e3f3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqWwMjFEiDWtX7HxRlXxkopY6Bw5zjU4tHWw0wr-PYZG7YBYfGXfz-ccHYTOCR4RytS40e2YYEaZ5ILyAzQgXBa5wJIeogHGlOQqncfoJMYGY8ILJQdoMlllroOgO7eBTLdt8J9umW5-lUXzBkvIrA9ZgBY698s86fDuN1kCDcQI8RQdWb2IcNbPIZrf3b5MH_LZ8_3jdDLLDROqy60umK2Y1tZAIaihhFIhtbwGUAIXuFKcV5Ug2l7XWEgjMSsor-rCgFHALBuim61ucm7AdLA2C1eXbUhxw1fptSun81n_2o9USbmvJElc7iQ-1hC7svHrsEqpS8q4woxLkaDRFjLBxxjA7iwILn-K_qt61avqaPTCBr0yLu5_US4VZwm72GJN7HzYrRklBWckrXFvq5dVcPUr7MP9Y_wN0p-XhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234903476</pqid></control><display><type>article</type><title>An iterative approximation scheme for repetitive Markov processes</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Tufecki, Tolga ; Gullu, Refik</creator><creatorcontrib>Tufecki, Tolga ; Gullu, Refik</creatorcontrib><description>Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative scheme is proposed for computing the stationary probabilities of such processes. An infinite state process is approximated by a finite state process by lumping an infinite number of states into a super-state. What we call the feedback rate, the conditional expected rate of flow from the super-state to the remaining states, given the process is in the super-state, is approximated simultaneously with the steady state probabilities. The method is theoretically developed and numerically tested for quasi-birth-and-death processes. It turns out that the new concept of the feedback rate can be effectively used in computing the stationary probabilities.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1239/jap/1032374624</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>60J05 ; 60J10 ; 60K25 ; approximate solutions ; Approximation ; Conditional probabilities ; Eigenvalues ; Eigenvectors ; Equations ; Exact sciences and technology ; Markov analysis ; Markov chains ; Markov processes ; Mathematical vectors ; Mathematics ; Matrices ; Nontrivial solutions ; numerical algorithms ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Quasi-birth-and-death processes ; Queuing theory ; Research Papers ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Studies</subject><ispartof>Journal of applied probability, 1999-09, Vol.36 (3), p.654-667</ispartof><rights>Copyright © Applied Probability Trust 1999</rights><rights>Copyright 1999 Applied Probability Trust</rights><rights>2000 INIST-CNRS</rights><rights>Copyright Applied Probability Trust Sep 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-fa53fb3aafce562c212267a78ee96050b944bb61af8d067c703524bd5cec9e3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3215431$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3215431$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1247943$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tufecki, Tolga</creatorcontrib><creatorcontrib>Gullu, Refik</creatorcontrib><title>An iterative approximation scheme for repetitive Markov processes</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative scheme is proposed for computing the stationary probabilities of such processes. An infinite state process is approximated by a finite state process by lumping an infinite number of states into a super-state. What we call the feedback rate, the conditional expected rate of flow from the super-state to the remaining states, given the process is in the super-state, is approximated simultaneously with the steady state probabilities. The method is theoretically developed and numerically tested for quasi-birth-and-death processes. It turns out that the new concept of the feedback rate can be effectively used in computing the stationary probabilities.</description><subject>60J05</subject><subject>60J10</subject><subject>60K25</subject><subject>approximate solutions</subject><subject>Approximation</subject><subject>Conditional probabilities</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Nontrivial solutions</subject><subject>numerical algorithms</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Quasi-birth-and-death processes</subject><subject>Queuing theory</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Studies</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqWwMjFEiDWtX7HxRlXxkopY6Bw5zjU4tHWw0wr-PYZG7YBYfGXfz-ccHYTOCR4RytS40e2YYEaZ5ILyAzQgXBa5wJIeogHGlOQqncfoJMYGY8ILJQdoMlllroOgO7eBTLdt8J9umW5-lUXzBkvIrA9ZgBY698s86fDuN1kCDcQI8RQdWb2IcNbPIZrf3b5MH_LZ8_3jdDLLDROqy60umK2Y1tZAIaihhFIhtbwGUAIXuFKcV5Ug2l7XWEgjMSsor-rCgFHALBuim61ucm7AdLA2C1eXbUhxw1fptSun81n_2o9USbmvJElc7iQ-1hC7svHrsEqpS8q4woxLkaDRFjLBxxjA7iwILn-K_qt61avqaPTCBr0yLu5_US4VZwm72GJN7HzYrRklBWckrXFvq5dVcPUr7MP9Y_wN0p-XhQ</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Tufecki, Tolga</creator><creator>Gullu, Refik</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990901</creationdate><title>An iterative approximation scheme for repetitive Markov processes</title><author>Tufecki, Tolga ; Gullu, Refik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fa53fb3aafce562c212267a78ee96050b944bb61af8d067c703524bd5cec9e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>60J05</topic><topic>60J10</topic><topic>60K25</topic><topic>approximate solutions</topic><topic>Approximation</topic><topic>Conditional probabilities</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Nontrivial solutions</topic><topic>numerical algorithms</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Quasi-birth-and-death processes</topic><topic>Queuing theory</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tufecki, Tolga</creatorcontrib><creatorcontrib>Gullu, Refik</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tufecki, Tolga</au><au>Gullu, Refik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative approximation scheme for repetitive Markov processes</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1999-09-01</date><risdate>1999</risdate><volume>36</volume><issue>3</issue><spage>654</spage><epage>667</epage><pages>654-667</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative scheme is proposed for computing the stationary probabilities of such processes. An infinite state process is approximated by a finite state process by lumping an infinite number of states into a super-state. What we call the feedback rate, the conditional expected rate of flow from the super-state to the remaining states, given the process is in the super-state, is approximated simultaneously with the steady state probabilities. The method is theoretically developed and numerically tested for quasi-birth-and-death processes. It turns out that the new concept of the feedback rate can be effectively used in computing the stationary probabilities.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1239/jap/1032374624</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1999-09, Vol.36 (3), p.654-667
issn 0021-9002
1475-6072
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_jap_1032374624
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects 60J05
60J10
60K25
approximate solutions
Approximation
Conditional probabilities
Eigenvalues
Eigenvectors
Equations
Exact sciences and technology
Markov analysis
Markov chains
Markov processes
Mathematical vectors
Mathematics
Matrices
Nontrivial solutions
numerical algorithms
Probability
Probability and statistics
Probability theory and stochastic processes
Quasi-birth-and-death processes
Queuing theory
Research Papers
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Studies
title An iterative approximation scheme for repetitive Markov processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20approximation%20scheme%20for%20repetitive%20Markov%20processes&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Tufecki,%20Tolga&rft.date=1999-09-01&rft.volume=36&rft.issue=3&rft.spage=654&rft.epage=667&rft.pages=654-667&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.1239/jap/1032374624&rft_dat=%3Cjstor_proje%3E3215431%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234903476&rft_id=info:pmid/&rft_cupid=10_1239_jap_1032374624&rft_jstor_id=3215431&rfr_iscdi=true