An iterative approximation scheme for repetitive Markov processes
Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative sc...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 1999-09, Vol.36 (3), p.654-667 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Repetitive Markov processes form a class of processes where the generator matrix has a particular repeating form. Many queueing models fall in this category such as M/M/1 queues, quasi-birth-and-death processes, and processes with M/G/1 or GI/M/1 generator matrices. In this paper, a new iterative scheme is proposed for computing the stationary probabilities of such processes. An infinite state process is approximated by a finite state process by lumping an infinite number of states into a super-state. What we call the feedback rate, the conditional expected rate of flow from the super-state to the remaining states, given the process is in the super-state, is approximated simultaneously with the steady state probabilities. The method is theoretically developed and numerically tested for quasi-birth-and-death processes. It turns out that the new concept of the feedback rate can be effectively used in computing the stationary probabilities. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1239/jap/1032374624 |