Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods
Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reduci...
Gespeichert in:
Veröffentlicht in: | Hiroshima mathematical journal 2012-11, Vol.42 (3), p.301-324 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 324 |
---|---|
container_issue | 3 |
container_start_page | 301 |
container_title | Hiroshima mathematical journal |
container_volume | 42 |
creator | Nagai, Isamu Yanagihara, Hirokazu Satoh, Kenichi |
description | Generalized ridge (GR) regression for an univariate linear model was
proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this
paper, we deal with a GR regression for a multivariate linear model, referred to as a
multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared
error (MSE) of a predicted value, many authors have proposed several GR estimators
consisting of ridge parameters optimized by non-iterative methods. By expanding their
optimizations of ridge parameters to the multiple response case, we derive some MGR
estimators with ridge parameters optimized by the plug-in method. We analytically
compare obtained MGR estimators with existing MGR estimators, and numerical
studies are also given for an illustration. |
doi_str_mv | 10.32917/hmj/1355238371 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1355238371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32917_hmj_1355238371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURj2ARCnMrP4Dodd2HvYGqnhUqtSFzsGOb1JXSRPZLlL762lpBBLTJ13dc4ZDyAODR8EVK2abbjtjIsu4kKJgV2QCwGTCoVA35DaELYAocplNyOdqiK5zRx1dv6N9Tb2zDdJBe91hRB-o29Fu30b3pb3TEWmDO_S6dUe047PHxmMIZ4E50KHdN8kZwrjpbbgj17VuA96POyXr15eP-XuyXL0t5s_LpEohi0nOAAxnOaQy0zxV0poizSQHIaxWFrWBWoNiOUc0jGEFQhvFVSXrWkluxJQ8XbyD77dYRdxXrbPl4F2n_aHstSvn6-V4HedUqfyrdFLMLorK9yF4rH9pBuVP1__EN9M4cJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</creator><creatorcontrib>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</creatorcontrib><description>Generalized ridge (GR) regression for an univariate linear model was
proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this
paper, we deal with a GR regression for a multivariate linear model, referred to as a
multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared
error (MSE) of a predicted value, many authors have proposed several GR estimators
consisting of ridge parameters optimized by non-iterative methods. By expanding their
optimizations of ridge parameters to the multiple response case, we derive some MGR
estimators with ridge parameters optimized by the plug-in method. We analytically
compare obtained MGR estimators with existing MGR estimators, and numerical
studies are also given for an illustration.</description><identifier>ISSN: 0018-2079</identifier><identifier>DOI: 10.32917/hmj/1355238371</identifier><language>eng</language><publisher>Hiroshima University, Department of Mathematics</publisher><subject>62H12 ; 62J07 ; Generalized ridge regression ; Mallows’ C_p statistic ; model selection ; multivariate linear regression model ; non-iterative estimation ; plug-in method</subject><ispartof>Hiroshima mathematical journal, 2012-11, Vol.42 (3), p.301-324</ispartof><rights>Copyright 2012 Hiroshima University, Department of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</citedby><cites>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,880,883,924,27907,27908</link.rule.ids></links><search><creatorcontrib>Nagai, Isamu</creatorcontrib><creatorcontrib>Yanagihara, Hirokazu</creatorcontrib><creatorcontrib>Satoh, Kenichi</creatorcontrib><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><title>Hiroshima mathematical journal</title><description>Generalized ridge (GR) regression for an univariate linear model was
proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this
paper, we deal with a GR regression for a multivariate linear model, referred to as a
multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared
error (MSE) of a predicted value, many authors have proposed several GR estimators
consisting of ridge parameters optimized by non-iterative methods. By expanding their
optimizations of ridge parameters to the multiple response case, we derive some MGR
estimators with ridge parameters optimized by the plug-in method. We analytically
compare obtained MGR estimators with existing MGR estimators, and numerical
studies are also given for an illustration.</description><subject>62H12</subject><subject>62J07</subject><subject>Generalized ridge regression</subject><subject>Mallows’ C_p statistic</subject><subject>model selection</subject><subject>multivariate linear regression model</subject><subject>non-iterative estimation</subject><subject>plug-in method</subject><issn>0018-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURj2ARCnMrP4Dodd2HvYGqnhUqtSFzsGOb1JXSRPZLlL762lpBBLTJ13dc4ZDyAODR8EVK2abbjtjIsu4kKJgV2QCwGTCoVA35DaELYAocplNyOdqiK5zRx1dv6N9Tb2zDdJBe91hRB-o29Fu30b3pb3TEWmDO_S6dUe047PHxmMIZ4E50KHdN8kZwrjpbbgj17VuA96POyXr15eP-XuyXL0t5s_LpEohi0nOAAxnOaQy0zxV0poizSQHIaxWFrWBWoNiOUc0jGEFQhvFVSXrWkluxJQ8XbyD77dYRdxXrbPl4F2n_aHstSvn6-V4HedUqfyrdFLMLorK9yF4rH9pBuVP1__EN9M4cJM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Nagai, Isamu</creator><creator>Yanagihara, Hirokazu</creator><creator>Satoh, Kenichi</creator><general>Hiroshima University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><author>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>62H12</topic><topic>62J07</topic><topic>Generalized ridge regression</topic><topic>Mallows’ C_p statistic</topic><topic>model selection</topic><topic>multivariate linear regression model</topic><topic>non-iterative estimation</topic><topic>plug-in method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagai, Isamu</creatorcontrib><creatorcontrib>Yanagihara, Hirokazu</creatorcontrib><creatorcontrib>Satoh, Kenichi</creatorcontrib><collection>CrossRef</collection><jtitle>Hiroshima mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagai, Isamu</au><au>Yanagihara, Hirokazu</au><au>Satoh, Kenichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</atitle><jtitle>Hiroshima mathematical journal</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>42</volume><issue>3</issue><spage>301</spage><epage>324</epage><pages>301-324</pages><issn>0018-2079</issn><abstract>Generalized ridge (GR) regression for an univariate linear model was
proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this
paper, we deal with a GR regression for a multivariate linear model, referred to as a
multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared
error (MSE) of a predicted value, many authors have proposed several GR estimators
consisting of ridge parameters optimized by non-iterative methods. By expanding their
optimizations of ridge parameters to the multiple response case, we derive some MGR
estimators with ridge parameters optimized by the plug-in method. We analytically
compare obtained MGR estimators with existing MGR estimators, and numerical
studies are also given for an illustration.</abstract><pub>Hiroshima University, Department of Mathematics</pub><doi>10.32917/hmj/1355238371</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-2079 |
ispartof | Hiroshima mathematical journal, 2012-11, Vol.42 (3), p.301-324 |
issn | 0018-2079 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1355238371 |
source | Project Euclid Open Access; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 62H12 62J07 Generalized ridge regression Mallows’ C_p statistic model selection multivariate linear regression model non-iterative estimation plug-in method |
title | Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20ridge%20parameters%20in%20multivariate%20generalized%20ridge%20regression%20by%20plug-in%20methods&rft.jtitle=Hiroshima%20mathematical%20journal&rft.au=Nagai,%20Isamu&rft.date=2012-11-01&rft.volume=42&rft.issue=3&rft.spage=301&rft.epage=324&rft.pages=301-324&rft.issn=0018-2079&rft_id=info:doi/10.32917/hmj/1355238371&rft_dat=%3Ccrossref_proje%3E10_32917_hmj_1355238371%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |