Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods

Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reduci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hiroshima mathematical journal 2012-11, Vol.42 (3), p.301-324
Hauptverfasser: Nagai, Isamu, Yanagihara, Hirokazu, Satoh, Kenichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 3
container_start_page 301
container_title Hiroshima mathematical journal
container_volume 42
creator Nagai, Isamu
Yanagihara, Hirokazu
Satoh, Kenichi
description Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared error (MSE) of a predicted value, many authors have proposed several GR estimators consisting of ridge parameters optimized by non-iterative methods. By expanding their optimizations of ridge parameters to the multiple response case, we derive some MGR estimators with ridge parameters optimized by the plug-in method. We analytically compare obtained MGR estimators with existing MGR estimators, and numerical studies are also given for an illustration.
doi_str_mv 10.32917/hmj/1355238371
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1355238371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32917_hmj_1355238371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</originalsourceid><addsrcrecordid>eNpdkDtPwzAURj2ARCnMrP4Dodd2HvYGqnhUqtSFzsGOb1JXSRPZLlL762lpBBLTJ13dc4ZDyAODR8EVK2abbjtjIsu4kKJgV2QCwGTCoVA35DaELYAocplNyOdqiK5zRx1dv6N9Tb2zDdJBe91hRB-o29Fu30b3pb3TEWmDO_S6dUe047PHxmMIZ4E50KHdN8kZwrjpbbgj17VuA96POyXr15eP-XuyXL0t5s_LpEohi0nOAAxnOaQy0zxV0poizSQHIaxWFrWBWoNiOUc0jGEFQhvFVSXrWkluxJQ8XbyD77dYRdxXrbPl4F2n_aHstSvn6-V4HedUqfyrdFLMLorK9yF4rH9pBuVP1__EN9M4cJM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><source>Project Euclid Open Access</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</creator><creatorcontrib>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</creatorcontrib><description>Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared error (MSE) of a predicted value, many authors have proposed several GR estimators consisting of ridge parameters optimized by non-iterative methods. By expanding their optimizations of ridge parameters to the multiple response case, we derive some MGR estimators with ridge parameters optimized by the plug-in method. We analytically compare obtained MGR estimators with existing MGR estimators, and numerical studies are also given for an illustration.</description><identifier>ISSN: 0018-2079</identifier><identifier>DOI: 10.32917/hmj/1355238371</identifier><language>eng</language><publisher>Hiroshima University, Department of Mathematics</publisher><subject>62H12 ; 62J07 ; Generalized ridge regression ; Mallows’ C_p statistic ; model selection ; multivariate linear regression model ; non-iterative estimation ; plug-in method</subject><ispartof>Hiroshima mathematical journal, 2012-11, Vol.42 (3), p.301-324</ispartof><rights>Copyright 2012 Hiroshima University, Department of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</citedby><cites>FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,880,883,924,27907,27908</link.rule.ids></links><search><creatorcontrib>Nagai, Isamu</creatorcontrib><creatorcontrib>Yanagihara, Hirokazu</creatorcontrib><creatorcontrib>Satoh, Kenichi</creatorcontrib><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><title>Hiroshima mathematical journal</title><description>Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared error (MSE) of a predicted value, many authors have proposed several GR estimators consisting of ridge parameters optimized by non-iterative methods. By expanding their optimizations of ridge parameters to the multiple response case, we derive some MGR estimators with ridge parameters optimized by the plug-in method. We analytically compare obtained MGR estimators with existing MGR estimators, and numerical studies are also given for an illustration.</description><subject>62H12</subject><subject>62J07</subject><subject>Generalized ridge regression</subject><subject>Mallows’ C_p statistic</subject><subject>model selection</subject><subject>multivariate linear regression model</subject><subject>non-iterative estimation</subject><subject>plug-in method</subject><issn>0018-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAURj2ARCnMrP4Dodd2HvYGqnhUqtSFzsGOb1JXSRPZLlL762lpBBLTJ13dc4ZDyAODR8EVK2abbjtjIsu4kKJgV2QCwGTCoVA35DaELYAocplNyOdqiK5zRx1dv6N9Tb2zDdJBe91hRB-o29Fu30b3pb3TEWmDO_S6dUe047PHxmMIZ4E50KHdN8kZwrjpbbgj17VuA96POyXr15eP-XuyXL0t5s_LpEohi0nOAAxnOaQy0zxV0poizSQHIaxWFrWBWoNiOUc0jGEFQhvFVSXrWkluxJQ8XbyD77dYRdxXrbPl4F2n_aHstSvn6-V4HedUqfyrdFLMLorK9yF4rH9pBuVP1__EN9M4cJM</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Nagai, Isamu</creator><creator>Yanagihara, Hirokazu</creator><creator>Satoh, Kenichi</creator><general>Hiroshima University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</title><author>Nagai, Isamu ; Yanagihara, Hirokazu ; Satoh, Kenichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-6100b2160485a2498db74582033da9deab0fa09162eeb11ec03ab929c8ff982b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>62H12</topic><topic>62J07</topic><topic>Generalized ridge regression</topic><topic>Mallows’ C_p statistic</topic><topic>model selection</topic><topic>multivariate linear regression model</topic><topic>non-iterative estimation</topic><topic>plug-in method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagai, Isamu</creatorcontrib><creatorcontrib>Yanagihara, Hirokazu</creatorcontrib><creatorcontrib>Satoh, Kenichi</creatorcontrib><collection>CrossRef</collection><jtitle>Hiroshima mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagai, Isamu</au><au>Yanagihara, Hirokazu</au><au>Satoh, Kenichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods</atitle><jtitle>Hiroshima mathematical journal</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>42</volume><issue>3</issue><spage>301</spage><epage>324</epage><pages>301-324</pages><issn>0018-2079</issn><abstract>Generalized ridge (GR) regression for an univariate linear model was proposed simultaneously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR) regression. From the viewpoint of reducing the mean squared error (MSE) of a predicted value, many authors have proposed several GR estimators consisting of ridge parameters optimized by non-iterative methods. By expanding their optimizations of ridge parameters to the multiple response case, we derive some MGR estimators with ridge parameters optimized by the plug-in method. We analytically compare obtained MGR estimators with existing MGR estimators, and numerical studies are also given for an illustration.</abstract><pub>Hiroshima University, Department of Mathematics</pub><doi>10.32917/hmj/1355238371</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-2079
ispartof Hiroshima mathematical journal, 2012-11, Vol.42 (3), p.301-324
issn 0018-2079
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1355238371
source Project Euclid Open Access; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62H12
62J07
Generalized ridge regression
Mallows’ C_p statistic
model selection
multivariate linear regression model
non-iterative estimation
plug-in method
title Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20ridge%20parameters%20in%20multivariate%20generalized%20ridge%20regression%20by%20plug-in%20methods&rft.jtitle=Hiroshima%20mathematical%20journal&rft.au=Nagai,%20Isamu&rft.date=2012-11-01&rft.volume=42&rft.issue=3&rft.spage=301&rft.epage=324&rft.pages=301-324&rft.issn=0018-2079&rft_id=info:doi/10.32917/hmj/1355238371&rft_dat=%3Ccrossref_proje%3E10_32917_hmj_1355238371%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true