The congruence subgroup property for the hyperelliptic modular group: the open surface case

Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hiroshima mathematical journal 2009-11, Vol.39 (3), p.351-362
1. Verfasser: Boggi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 3
container_start_page 351
container_title Hiroshima mathematical journal
container_volume 39
creator Boggi, Marco
description Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller modular group and hyperelliptic modular group. A choice of base point on \cH_{g,n} defines a monomorphism H_{g,n}\hookra\GG_{g,n}. ¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed. The Teichmüller group \GG_{g,n} is the group of isotopy classes of diffeomorphisms of the surface S_{g,n} which preserve the orientation and a given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic modular group then admits a natural faithful representation H_{g,n}\hookra\out(\pi_1(S_{g,n})). ¶ The congruence subgroup problem for H_{g,n} asks whether, for any given finite index subgroup H^\ld of H_{g,n}, there exists a finite index characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in H^\ld. The main result of the paper is an affirmative answer to this question for n\geq 1.
doi_str_mv 10.32917/hmj/1257544213
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1257544213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32917_hmj_1257544213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhjW00DTt3FV_wM3pw5bcqSX0CwJdkqmDUeRTbONERrKH_PuKJLTQ6bjjeR-Ol5AHBo-Cl0wtmn23YDxXuZSciSsyA2A646DKG3IbYwcgVKHzGfleN0itP-zChAeLNE7bXfDTQIfgBwzjkTof6Jig5ph27Pt2GFtL976eehPoCX46AYk_pHxwJnmsiXhHrp3pI95f5pxs3l7Xy49s9fX-uXxZZVYKOWYFSg1WKmdKKQwgB2dFXStToC5BlE4qiapAkFpuJZeF0kLXOec1syzXIObk-exNP3doR5xs39bVENq9CcfKm7ZablaX62Wkgqq_gpJicVbY4GMM6H7TDKpTpf8TP881bbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><source>Project Euclid Open Access</source><source>Freely Accessible Japanese Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Boggi, Marco</creator><creatorcontrib>Boggi, Marco</creatorcontrib><description>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n&gt;0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller modular group and hyperelliptic modular group. A choice of base point on \cH_{g,n} defines a monomorphism H_{g,n}\hookra\GG_{g,n}. ¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed. The Teichmüller group \GG_{g,n} is the group of isotopy classes of diffeomorphisms of the surface S_{g,n} which preserve the orientation and a given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic modular group then admits a natural faithful representation H_{g,n}\hookra\out(\pi_1(S_{g,n})). ¶ The congruence subgroup problem for H_{g,n} asks whether, for any given finite index subgroup H^\ld of H_{g,n}, there exists a finite index characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in H^\ld. The main result of the paper is an affirmative answer to this question for n\geq 1.</description><identifier>ISSN: 0018-2079</identifier><identifier>DOI: 10.32917/hmj/1257544213</identifier><language>eng</language><publisher>Hiroshima University, Department of Mathematics</publisher><subject>11R34 ; 14F35 ; 14H10 ; 14H15 ; congruence subgroups ; moduli of curves ; profinite groups ; Teichmüller theory</subject><ispartof>Hiroshima mathematical journal, 2009-11, Vol.39 (3), p.351-362</ispartof><rights>Copyright 2009 Hiroshima University, Department of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,878,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Boggi, Marco</creatorcontrib><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><title>Hiroshima mathematical journal</title><description>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n&gt;0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller modular group and hyperelliptic modular group. A choice of base point on \cH_{g,n} defines a monomorphism H_{g,n}\hookra\GG_{g,n}. ¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed. The Teichmüller group \GG_{g,n} is the group of isotopy classes of diffeomorphisms of the surface S_{g,n} which preserve the orientation and a given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic modular group then admits a natural faithful representation H_{g,n}\hookra\out(\pi_1(S_{g,n})). ¶ The congruence subgroup problem for H_{g,n} asks whether, for any given finite index subgroup H^\ld of H_{g,n}, there exists a finite index characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in H^\ld. The main result of the paper is an affirmative answer to this question for n\geq 1.</description><subject>11R34</subject><subject>14F35</subject><subject>14H10</subject><subject>14H15</subject><subject>congruence subgroups</subject><subject>moduli of curves</subject><subject>profinite groups</subject><subject>Teichmüller theory</subject><issn>0018-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkD1rwzAQhjW00DTt3FV_wM3pw5bcqSX0CwJdkqmDUeRTbONERrKH_PuKJLTQ6bjjeR-Ol5AHBo-Cl0wtmn23YDxXuZSciSsyA2A646DKG3IbYwcgVKHzGfleN0itP-zChAeLNE7bXfDTQIfgBwzjkTof6Jig5ph27Pt2GFtL976eehPoCX46AYk_pHxwJnmsiXhHrp3pI95f5pxs3l7Xy49s9fX-uXxZZVYKOWYFSg1WKmdKKQwgB2dFXStToC5BlE4qiapAkFpuJZeF0kLXOec1syzXIObk-exNP3doR5xs39bVENq9CcfKm7ZablaX62Wkgqq_gpJicVbY4GMM6H7TDKpTpf8TP881bbw</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Boggi, Marco</creator><general>Hiroshima University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><author>Boggi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>11R34</topic><topic>14F35</topic><topic>14H10</topic><topic>14H15</topic><topic>congruence subgroups</topic><topic>moduli of curves</topic><topic>profinite groups</topic><topic>Teichmüller theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boggi, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Hiroshima mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boggi, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The congruence subgroup property for the hyperelliptic modular group: the open surface case</atitle><jtitle>Hiroshima mathematical journal</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>39</volume><issue>3</issue><spage>351</spage><epage>362</epage><pages>351-362</pages><issn>0018-2079</issn><abstract>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n&gt;0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller modular group and hyperelliptic modular group. A choice of base point on \cH_{g,n} defines a monomorphism H_{g,n}\hookra\GG_{g,n}. ¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed. The Teichmüller group \GG_{g,n} is the group of isotopy classes of diffeomorphisms of the surface S_{g,n} which preserve the orientation and a given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic modular group then admits a natural faithful representation H_{g,n}\hookra\out(\pi_1(S_{g,n})). ¶ The congruence subgroup problem for H_{g,n} asks whether, for any given finite index subgroup H^\ld of H_{g,n}, there exists a finite index characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in H^\ld. The main result of the paper is an affirmative answer to this question for n\geq 1.</abstract><pub>Hiroshima University, Department of Mathematics</pub><doi>10.32917/hmj/1257544213</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-2079
ispartof Hiroshima mathematical journal, 2009-11, Vol.39 (3), p.351-362
issn 0018-2079
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1257544213
source Project Euclid Open Access; Freely Accessible Japanese Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects 11R34
14F35
14H10
14H15
congruence subgroups
moduli of curves
profinite groups
Teichmüller theory
title The congruence subgroup property for the hyperelliptic modular group: the open surface case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20congruence%20subgroup%20property%20for%20the%20hyperelliptic%20modular%20group:%20the%20open%20surface%20case&rft.jtitle=Hiroshima%20mathematical%20journal&rft.au=Boggi,%20Marco&rft.date=2009-11-01&rft.volume=39&rft.issue=3&rft.spage=351&rft.epage=362&rft.pages=351-362&rft.issn=0018-2079&rft_id=info:doi/10.32917/hmj/1257544213&rft_dat=%3Ccrossref_proje%3E10_32917_hmj_1257544213%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true