The congruence subgroup property for the hyperelliptic modular group: the open surface case
Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli stack of n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic curves. Their topological fundamental groups can be identified, respectively, with \GG_{g,n} and H_{g,n}, the so called Teichmüller...
Gespeichert in:
Veröffentlicht in: | Hiroshima mathematical journal 2009-11, Vol.39 (3), p.351-362 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 3 |
container_start_page | 351 |
container_title | Hiroshima mathematical journal |
container_volume | 39 |
creator | Boggi, Marco |
description | Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli
stack of n-pointed, genus g smooth curves and its closed substack consisting
of hyperelliptic curves. Their topological fundamental groups can be identified,
respectively, with \GG_{g,n} and H_{g,n}, the so called
Teichmüller modular group and hyperelliptic modular
group. A choice of base point on \cH_{g,n} defines a monomorphism
H_{g,n}\hookra\GG_{g,n}.
¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed.
The Teichmüller group \GG_{g,n} is the group of isotopy classes of
diffeomorphisms of the surface S_{g,n} which preserve the orientation and a
given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic
modular group then admits a natural faithful representation
H_{g,n}\hookra\out(\pi_1(S_{g,n})).
¶ The congruence subgroup problem for H_{g,n} asks whether, for any given
finite index subgroup H^\ld of H_{g,n}, there exists a finite index
characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the
induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in
H^\ld. The main result of the paper is an affirmative answer to this question
for n\geq 1. |
doi_str_mv | 10.32917/hmj/1257544213 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1257544213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32917_hmj_1257544213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</originalsourceid><addsrcrecordid>eNpdkD1rwzAQhjW00DTt3FV_wM3pw5bcqSX0CwJdkqmDUeRTbONERrKH_PuKJLTQ6bjjeR-Ol5AHBo-Cl0wtmn23YDxXuZSciSsyA2A646DKG3IbYwcgVKHzGfleN0itP-zChAeLNE7bXfDTQIfgBwzjkTof6Jig5ph27Pt2GFtL976eehPoCX46AYk_pHxwJnmsiXhHrp3pI95f5pxs3l7Xy49s9fX-uXxZZVYKOWYFSg1WKmdKKQwgB2dFXStToC5BlE4qiapAkFpuJZeF0kLXOec1syzXIObk-exNP3doR5xs39bVENq9CcfKm7ZablaX62Wkgqq_gpJicVbY4GMM6H7TDKpTpf8TP881bbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><source>Project Euclid Open Access</source><source>Freely Accessible Japanese Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Boggi, Marco</creator><creatorcontrib>Boggi, Marco</creatorcontrib><description>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli
stack of n-pointed, genus g smooth curves and its closed substack consisting
of hyperelliptic curves. Their topological fundamental groups can be identified,
respectively, with \GG_{g,n} and H_{g,n}, the so called
Teichmüller modular group and hyperelliptic modular
group. A choice of base point on \cH_{g,n} defines a monomorphism
H_{g,n}\hookra\GG_{g,n}.
¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed.
The Teichmüller group \GG_{g,n} is the group of isotopy classes of
diffeomorphisms of the surface S_{g,n} which preserve the orientation and a
given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic
modular group then admits a natural faithful representation
H_{g,n}\hookra\out(\pi_1(S_{g,n})).
¶ The congruence subgroup problem for H_{g,n} asks whether, for any given
finite index subgroup H^\ld of H_{g,n}, there exists a finite index
characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the
induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in
H^\ld. The main result of the paper is an affirmative answer to this question
for n\geq 1.</description><identifier>ISSN: 0018-2079</identifier><identifier>DOI: 10.32917/hmj/1257544213</identifier><language>eng</language><publisher>Hiroshima University, Department of Mathematics</publisher><subject>11R34 ; 14F35 ; 14H10 ; 14H15 ; congruence subgroups ; moduli of curves ; profinite groups ; Teichmüller theory</subject><ispartof>Hiroshima mathematical journal, 2009-11, Vol.39 (3), p.351-362</ispartof><rights>Copyright 2009 Hiroshima University, Department of Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,878,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Boggi, Marco</creatorcontrib><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><title>Hiroshima mathematical journal</title><description>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli
stack of n-pointed, genus g smooth curves and its closed substack consisting
of hyperelliptic curves. Their topological fundamental groups can be identified,
respectively, with \GG_{g,n} and H_{g,n}, the so called
Teichmüller modular group and hyperelliptic modular
group. A choice of base point on \cH_{g,n} defines a monomorphism
H_{g,n}\hookra\GG_{g,n}.
¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed.
The Teichmüller group \GG_{g,n} is the group of isotopy classes of
diffeomorphisms of the surface S_{g,n} which preserve the orientation and a
given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic
modular group then admits a natural faithful representation
H_{g,n}\hookra\out(\pi_1(S_{g,n})).
¶ The congruence subgroup problem for H_{g,n} asks whether, for any given
finite index subgroup H^\ld of H_{g,n}, there exists a finite index
characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the
induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in
H^\ld. The main result of the paper is an affirmative answer to this question
for n\geq 1.</description><subject>11R34</subject><subject>14F35</subject><subject>14H10</subject><subject>14H15</subject><subject>congruence subgroups</subject><subject>moduli of curves</subject><subject>profinite groups</subject><subject>Teichmüller theory</subject><issn>0018-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpdkD1rwzAQhjW00DTt3FV_wM3pw5bcqSX0CwJdkqmDUeRTbONERrKH_PuKJLTQ6bjjeR-Ol5AHBo-Cl0wtmn23YDxXuZSciSsyA2A646DKG3IbYwcgVKHzGfleN0itP-zChAeLNE7bXfDTQIfgBwzjkTof6Jig5ph27Pt2GFtL976eehPoCX46AYk_pHxwJnmsiXhHrp3pI95f5pxs3l7Xy49s9fX-uXxZZVYKOWYFSg1WKmdKKQwgB2dFXStToC5BlE4qiapAkFpuJZeF0kLXOec1syzXIObk-exNP3doR5xs39bVENq9CcfKm7ZablaX62Wkgqq_gpJicVbY4GMM6H7TDKpTpf8TP881bbw</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Boggi, Marco</creator><general>Hiroshima University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091101</creationdate><title>The congruence subgroup property for the hyperelliptic modular group: the open surface case</title><author>Boggi, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6e480c47fa943a0e20fc3dd7a6e89039f474e76e0484b42467838d522d1c15803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>11R34</topic><topic>14F35</topic><topic>14H10</topic><topic>14H15</topic><topic>congruence subgroups</topic><topic>moduli of curves</topic><topic>profinite groups</topic><topic>Teichmüller theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boggi, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>Hiroshima mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boggi, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The congruence subgroup property for the hyperelliptic modular group: the open surface case</atitle><jtitle>Hiroshima mathematical journal</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>39</volume><issue>3</issue><spage>351</spage><epage>362</epage><pages>351-362</pages><issn>0018-2079</issn><abstract>Let \cM_{g,n} and \cH_{g,n}, for 2g-2+n>0, be, respectively, the moduli
stack of n-pointed, genus g smooth curves and its closed substack consisting
of hyperelliptic curves. Their topological fundamental groups can be identified,
respectively, with \GG_{g,n} and H_{g,n}, the so called
Teichmüller modular group and hyperelliptic modular
group. A choice of base point on \cH_{g,n} defines a monomorphism
H_{g,n}\hookra\GG_{g,n}.
¶ Let S_{g,n} be a compact Riemann surface of genus g with n points removed.
The Teichmüller group \GG_{g,n} is the group of isotopy classes of
diffeomorphisms of the surface S_{g,n} which preserve the orientation and a
given order of the punctures. As a subgroup of \GG_{g,n}, the hyperelliptic
modular group then admits a natural faithful representation
H_{g,n}\hookra\out(\pi_1(S_{g,n})).
¶ The congruence subgroup problem for H_{g,n} asks whether, for any given
finite index subgroup H^\ld of H_{g,n}, there exists a finite index
characteristic subgroup K of \pi_1(S_{g,n}) such that the kernel of the
induced representation H_{g,n}\ra\out(\pi_1(S_{g,n})/K) is contained in
H^\ld. The main result of the paper is an affirmative answer to this question
for n\geq 1.</abstract><pub>Hiroshima University, Department of Mathematics</pub><doi>10.32917/hmj/1257544213</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-2079 |
ispartof | Hiroshima mathematical journal, 2009-11, Vol.39 (3), p.351-362 |
issn | 0018-2079 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_hmj_1257544213 |
source | Project Euclid Open Access; Freely Accessible Japanese Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | 11R34 14F35 14H10 14H15 congruence subgroups moduli of curves profinite groups Teichmüller theory |
title | The congruence subgroup property for the hyperelliptic modular group: the open surface case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20congruence%20subgroup%20property%20for%20the%20hyperelliptic%20modular%20group:%20the%20open%20surface%20case&rft.jtitle=Hiroshima%20mathematical%20journal&rft.au=Boggi,%20Marco&rft.date=2009-11-01&rft.volume=39&rft.issue=3&rft.spage=351&rft.epage=362&rft.pages=351-362&rft.issn=0018-2079&rft_id=info:doi/10.32917/hmj/1257544213&rft_dat=%3Ccrossref_proje%3E10_32917_hmj_1257544213%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |