Rigidity of stationary black holes with small angular momentum on the horizon

We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2014-11, Vol.163 (14), p.2603-2615
Hauptverfasser: Alexakis, S., Ionescu, A. D., Klainerman, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2615
container_issue 14
container_start_page 2603
container_title Duke mathematical journal
container_volume 163
creator Alexakis, S.
Ionescu, A. D.
Klainerman, S.
description We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary. ¶ The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.
doi_str_mv 10.1215/00127094-2819517
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1414762065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1215_00127094_2819517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKJgrd495g-s5rVJ9qYUX1ARpJ5DmmTb1OymJCmiv95dunoa5pv5hmEAuMboBhNc3yKEiUANq4jETY3FCZjhmolK0EaegtkoV6N-Di5y3o204WQGXt_9xltfvmFsYS66-Njr9A3XQZtPuI3BZfjlyxbmTocAdb85BJ1gFzvXl0MHYw_L1g3G5H9ifwnOWh2yu5pwDlaPD6vFc7V8e3pZ3C8rQxkpVSuocVgaLgWi0jlkNZc1b7igdOBibKeRsKatMXYNk5xpga0kViK9bukc3B1j9ynunCnuYIK3ap98N3RXUXu1-FhO1wlst1OYYSY4QbweItAxwqSYc3Lt_zdGahxU_Q2qpkHpL7QvaSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><source>Project Euclid Complete</source><creator>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</creator><creatorcontrib>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</creatorcontrib><description>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary. ¶ The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2819517</identifier><language>eng</language><publisher>Duke University Press</publisher><subject>35L72 ; 53Z05 ; black holes ; Einstein ; rigidity</subject><ispartof>Duke mathematical journal, 2014-11, Vol.163 (14), p.2603-2615</ispartof><rights>Copyright 2014 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</citedby><cites>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Alexakis, S.</creatorcontrib><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Klainerman, S.</creatorcontrib><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><title>Duke mathematical journal</title><description>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary. ¶ The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</description><subject>35L72</subject><subject>53Z05</subject><subject>black holes</subject><subject>Einstein</subject><subject>rigidity</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLAzEYDKJgrd495g-s5rVJ9qYUX1ARpJ5DmmTb1OymJCmiv95dunoa5pv5hmEAuMboBhNc3yKEiUANq4jETY3FCZjhmolK0EaegtkoV6N-Di5y3o204WQGXt_9xltfvmFsYS66-Njr9A3XQZtPuI3BZfjlyxbmTocAdb85BJ1gFzvXl0MHYw_L1g3G5H9ifwnOWh2yu5pwDlaPD6vFc7V8e3pZ3C8rQxkpVSuocVgaLgWi0jlkNZc1b7igdOBibKeRsKatMXYNk5xpga0kViK9bukc3B1j9ynunCnuYIK3ap98N3RXUXu1-FhO1wlst1OYYSY4QbweItAxwqSYc3Lt_zdGahxU_Q2qpkHpL7QvaSg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Alexakis, S.</creator><creator>Ionescu, A. D.</creator><creator>Klainerman, S.</creator><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><author>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>35L72</topic><topic>53Z05</topic><topic>black holes</topic><topic>Einstein</topic><topic>rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexakis, S.</creatorcontrib><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Klainerman, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexakis, S.</au><au>Ionescu, A. D.</au><au>Klainerman, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of stationary black holes with small angular momentum on the horizon</atitle><jtitle>Duke mathematical journal</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>163</volume><issue>14</issue><spage>2603</spage><epage>2615</epage><pages>2603-2615</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary. ¶ The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</abstract><pub>Duke University Press</pub><doi>10.1215/00127094-2819517</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2014-11, Vol.163 (14), p.2603-2615
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1414762065
source Project Euclid Complete
subjects 35L72
53Z05
black holes
Einstein
rigidity
title Rigidity of stationary black holes with small angular momentum on the horizon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20stationary%20black%20holes%20with%20small%20angular%20momentum%20on%20the%20horizon&rft.jtitle=Duke%20mathematical%20journal&rft.au=Alexakis,%20S.&rft.date=2014-11-01&rft.volume=163&rft.issue=14&rft.spage=2603&rft.epage=2615&rft.pages=2603-2615&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2819517&rft_dat=%3Ccrossref_proje%3E10_1215_00127094_2819517%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true