Rigidity of stationary black holes with small angular momentum on the horizon
We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the st...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2014-11, Vol.163 (14), p.2603-2615 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2615 |
---|---|
container_issue | 14 |
container_start_page | 2603 |
container_title | Duke mathematical journal |
container_volume | 163 |
creator | Alexakis, S. Ionescu, A. D. Klainerman, S. |
description | We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary.
¶
The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates. |
doi_str_mv | 10.1215/00127094-2819517 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1414762065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1215_00127094_2819517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKJgrd495g-s5rVJ9qYUX1ARpJ5DmmTb1OymJCmiv95dunoa5pv5hmEAuMboBhNc3yKEiUANq4jETY3FCZjhmolK0EaegtkoV6N-Di5y3o204WQGXt_9xltfvmFsYS66-Njr9A3XQZtPuI3BZfjlyxbmTocAdb85BJ1gFzvXl0MHYw_L1g3G5H9ifwnOWh2yu5pwDlaPD6vFc7V8e3pZ3C8rQxkpVSuocVgaLgWi0jlkNZc1b7igdOBibKeRsKatMXYNk5xpga0kViK9bukc3B1j9ynunCnuYIK3ap98N3RXUXu1-FhO1wlst1OYYSY4QbweItAxwqSYc3Lt_zdGahxU_Q2qpkHpL7QvaSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><source>Project Euclid Complete</source><creator>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</creator><creatorcontrib>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</creatorcontrib><description>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary.
¶
The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2819517</identifier><language>eng</language><publisher>Duke University Press</publisher><subject>35L72 ; 53Z05 ; black holes ; Einstein ; rigidity</subject><ispartof>Duke mathematical journal, 2014-11, Vol.163 (14), p.2603-2615</ispartof><rights>Copyright 2014 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</citedby><cites>FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Alexakis, S.</creatorcontrib><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Klainerman, S.</creatorcontrib><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><title>Duke mathematical journal</title><description>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary.
¶
The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</description><subject>35L72</subject><subject>53Z05</subject><subject>black holes</subject><subject>Einstein</subject><subject>rigidity</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLAzEYDKJgrd495g-s5rVJ9qYUX1ARpJ5DmmTb1OymJCmiv95dunoa5pv5hmEAuMboBhNc3yKEiUANq4jETY3FCZjhmolK0EaegtkoV6N-Di5y3o204WQGXt_9xltfvmFsYS66-Njr9A3XQZtPuI3BZfjlyxbmTocAdb85BJ1gFzvXl0MHYw_L1g3G5H9ifwnOWh2yu5pwDlaPD6vFc7V8e3pZ3C8rQxkpVSuocVgaLgWi0jlkNZc1b7igdOBibKeRsKatMXYNk5xpga0kViK9bukc3B1j9ynunCnuYIK3ap98N3RXUXu1-FhO1wlst1OYYSY4QbweItAxwqSYc3Lt_zdGahxU_Q2qpkHpL7QvaSg</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Alexakis, S.</creator><creator>Ionescu, A. D.</creator><creator>Klainerman, S.</creator><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141101</creationdate><title>Rigidity of stationary black holes with small angular momentum on the horizon</title><author>Alexakis, S. ; Ionescu, A. D. ; Klainerman, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-f73ce18c687038ee0da68569673338e70012a07dcf511e94864a71d82d80abf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>35L72</topic><topic>53Z05</topic><topic>black holes</topic><topic>Einstein</topic><topic>rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexakis, S.</creatorcontrib><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Klainerman, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexakis, S.</au><au>Ionescu, A. D.</au><au>Klainerman, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity of stationary black holes with small angular momentum on the horizon</atitle><jtitle>Duke mathematical journal</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>163</volume><issue>14</issue><spage>2603</spage><epage>2615</epage><pages>2603-2615</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>We prove a black hole rigidity result for slowly rotating stationary solutions of the Einstein vacuum equations. More precisely, we prove that the domain of outer communications of a regular stationary vacuum is isometric to the domain of outer communications of a Kerr solution, provided that the stationary Killing vector-field \mathbf{T} is small (depending only on suitable regularity properties of the black hole) on the bifurcation sphere. No other global restrictions are necessary.
¶
The proof brings together ideas from our previous work with ideas from the classical work of Sudarsky and Wald on the staticity of stationary black hole solutions with zero angular momentum on the horizon. It is thus the first uniqueness result, in the framework of smooth, asymptotically flat, stationary solutions, which combines local considerations near the horizon, via Carleman estimates, with information obtained by global elliptic estimates.</abstract><pub>Duke University Press</pub><doi>10.1215/00127094-2819517</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2014-11, Vol.163 (14), p.2603-2615 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1414762065 |
source | Project Euclid Complete |
subjects | 35L72 53Z05 black holes Einstein rigidity |
title | Rigidity of stationary black holes with small angular momentum on the horizon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20of%20stationary%20black%20holes%20with%20small%20angular%20momentum%20on%20the%20horizon&rft.jtitle=Duke%20mathematical%20journal&rft.au=Alexakis,%20S.&rft.date=2014-11-01&rft.volume=163&rft.issue=14&rft.spage=2603&rft.epage=2615&rft.pages=2603-2615&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2819517&rft_dat=%3Ccrossref_proje%3E10_1215_00127094_2819517%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |