Gabor frames and totally positive functions
Let g be a totally positive function of finite type, that is, \hat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1} for \delta_{\nu}\in\mathbb {R} , \delta_{\nu}\neq0 , and M\geq2 , and let \alpha,\beta\gt 0 . Then the set \{e^{2\pi i\beta lt}g(t-\alpha k):k,l\in\mathbb {Z}\} is a frame for L...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2013-04, Vol.162 (6), p.1003-1031 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1031 |
---|---|
container_issue | 6 |
container_start_page | 1003 |
container_title | Duke mathematical journal |
container_volume | 162 |
creator | Gröchenig, Karlheinz Stöckler, Joachim |
description | Let g be a totally positive function of finite type, that is, \hat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1} for \delta_{\nu}\in\mathbb {R} , \delta_{\nu}\neq0 , and M\geq2 , and let \alpha,\beta\gt 0 . Then the set \{e^{2\pi i\beta lt}g(t-\alpha k):k,l\in\mathbb {Z}\} is a frame for L^{2}(\mathbb {R}) if and only if \alpha \beta\lt 1 . This result is a first positive contribution to a conjecture of Daubechies from 1990. Until now, the complete characterization of lattice parameters \alpha , \beta that generate a frame has been known for only six window functions g . Our main result now yields an uncountable class of window functions. As a by-product of the proof method, we also derive new sampling theorems in shift-invariant spaces and obtain the correct Nyquist rate. |
doi_str_mv | 10.1215/00127094-2141944 |
format | Article |
fullrecord | <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1366639398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1215_00127094_2141944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-997e890320cf319f7a282dba43054e223b4ace70c0836f2cfc8cf64c657cf7483</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7ePfYu0Xw1aW5K0VUoeHHPIZ0m0NI2JekK--_dsnVPLzMv88A8CD1S8kwZzV8IoUwRLTCjgmohrtCG5kJhxXVxjTZLjZf-Ft2l1C2jlmyDnna2DjHz0Q4uZXZssjnMtu-P2RRSO7e_LvOHEeY2jOke3XjbJ_ew5hbtP95_yk9cfe--yrcKAxdsxlorV2jCGQHPqfbKsoI1tRWc5MIxxmthwSkCpODSM_BQgJcCZK7AK1HwLXo9c6cYOgezO0DfNmaK7WDj0QTbmnJfrds1mqEzlEspuT49fEKQMwJiSCk6f7mmxCy-zL8vs_rif5xOXSU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gabor frames and totally positive functions</title><source>Project Euclid Complete</source><creator>Gröchenig, Karlheinz ; Stöckler, Joachim</creator><creatorcontrib>Gröchenig, Karlheinz ; Stöckler, Joachim</creatorcontrib><description>Let g be a totally positive function of finite type, that is, \hat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1} for \delta_{\nu}\in\mathbb {R} , \delta_{\nu}\neq0 , and M\geq2 , and let \alpha,\beta\gt 0 . Then the set \{e^{2\pi i\beta lt}g(t-\alpha k):k,l\in\mathbb {Z}\} is a frame for L^{2}(\mathbb {R}) if and only if \alpha \beta\lt 1 . This result is a first positive contribution to a conjecture of Daubechies from 1990. Until now, the complete characterization of lattice parameters \alpha , \beta that generate a frame has been known for only six window functions g . Our main result now yields an uncountable class of window functions. As a by-product of the proof method, we also derive new sampling theorems in shift-invariant spaces and obtain the correct Nyquist rate.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2141944</identifier><language>eng</language><publisher>Duke University Press</publisher><subject>42C15 ; 42C40 ; 94A20</subject><ispartof>Duke mathematical journal, 2013-04, Vol.162 (6), p.1003-1031</ispartof><rights>Copyright 2013 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-997e890320cf319f7a282dba43054e223b4ace70c0836f2cfc8cf64c657cf7483</citedby><cites>FETCH-LOGICAL-c342t-997e890320cf319f7a282dba43054e223b4ace70c0836f2cfc8cf64c657cf7483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Gröchenig, Karlheinz</creatorcontrib><creatorcontrib>Stöckler, Joachim</creatorcontrib><title>Gabor frames and totally positive functions</title><title>Duke mathematical journal</title><description>Let g be a totally positive function of finite type, that is, \hat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1} for \delta_{\nu}\in\mathbb {R} , \delta_{\nu}\neq0 , and M\geq2 , and let \alpha,\beta\gt 0 . Then the set \{e^{2\pi i\beta lt}g(t-\alpha k):k,l\in\mathbb {Z}\} is a frame for L^{2}(\mathbb {R}) if and only if \alpha \beta\lt 1 . This result is a first positive contribution to a conjecture of Daubechies from 1990. Until now, the complete characterization of lattice parameters \alpha , \beta that generate a frame has been known for only six window functions g . Our main result now yields an uncountable class of window functions. As a by-product of the proof method, we also derive new sampling theorems in shift-invariant spaces and obtain the correct Nyquist rate.</description><subject>42C15</subject><subject>42C40</subject><subject>94A20</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMouK7ePfYu0Xw1aW5K0VUoeHHPIZ0m0NI2JekK--_dsnVPLzMv88A8CD1S8kwZzV8IoUwRLTCjgmohrtCG5kJhxXVxjTZLjZf-Ft2l1C2jlmyDnna2DjHz0Q4uZXZssjnMtu-P2RRSO7e_LvOHEeY2jOke3XjbJ_ew5hbtP95_yk9cfe--yrcKAxdsxlorV2jCGQHPqfbKsoI1tRWc5MIxxmthwSkCpODSM_BQgJcCZK7AK1HwLXo9c6cYOgezO0DfNmaK7WDj0QTbmnJfrds1mqEzlEspuT49fEKQMwJiSCk6f7mmxCy-zL8vs_rif5xOXSU</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Gröchenig, Karlheinz</creator><creator>Stöckler, Joachim</creator><general>Duke University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130415</creationdate><title>Gabor frames and totally positive functions</title><author>Gröchenig, Karlheinz ; Stöckler, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-997e890320cf319f7a282dba43054e223b4ace70c0836f2cfc8cf64c657cf7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>42C15</topic><topic>42C40</topic><topic>94A20</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gröchenig, Karlheinz</creatorcontrib><creatorcontrib>Stöckler, Joachim</creatorcontrib><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gröchenig, Karlheinz</au><au>Stöckler, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gabor frames and totally positive functions</atitle><jtitle>Duke mathematical journal</jtitle><date>2013-04-15</date><risdate>2013</risdate><volume>162</volume><issue>6</issue><spage>1003</spage><epage>1031</epage><pages>1003-1031</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>Let g be a totally positive function of finite type, that is, \hat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1} for \delta_{\nu}\in\mathbb {R} , \delta_{\nu}\neq0 , and M\geq2 , and let \alpha,\beta\gt 0 . Then the set \{e^{2\pi i\beta lt}g(t-\alpha k):k,l\in\mathbb {Z}\} is a frame for L^{2}(\mathbb {R}) if and only if \alpha \beta\lt 1 . This result is a first positive contribution to a conjecture of Daubechies from 1990. Until now, the complete characterization of lattice parameters \alpha , \beta that generate a frame has been known for only six window functions g . Our main result now yields an uncountable class of window functions. As a by-product of the proof method, we also derive new sampling theorems in shift-invariant spaces and obtain the correct Nyquist rate.</abstract><pub>Duke University Press</pub><doi>10.1215/00127094-2141944</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2013-04, Vol.162 (6), p.1003-1031 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1366639398 |
source | Project Euclid Complete |
subjects | 42C15 42C40 94A20 |
title | Gabor frames and totally positive functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gabor%20frames%20and%20totally%20positive%20functions&rft.jtitle=Duke%20mathematical%20journal&rft.au=Gr%C3%B6chenig,%20Karlheinz&rft.date=2013-04-15&rft.volume=162&rft.issue=6&rft.spage=1003&rft.epage=1031&rft.pages=1003-1031&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2141944&rft_dat=%3Ccrossref_proje%3E10_1215_00127094_2141944%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |