Homology of the curve complex and the Steinberg module of the mapping class group

By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2012-07, Vol.161 (10), p.1943-1969, Article 1943
1. Verfasser: Broaddus, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 10
container_start_page 1943
container_title Duke mathematical journal
container_volume 161
creator Broaddus, Nathan
description By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.
doi_str_mv 10.1215/00127094-1645634
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1340801628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_D3D1S7MQ_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWwM-YPBOw4sZ0N1AJFKkJV6Ww5thNckjiyE9T-exKadmBgudN9PO-dXgBuEbxDEUruIUQRhWkcIhInBMdnYIKSmIYUp-wcTIZxOMwvwZX326FMSTQBq4WtbGmLfWDzoP3Ugezcdx9t1ZR6F4ha_XbXrTZ1pl0RVFZ1pT5uV6JpTF0EshTeB4WzXXMNLnJRen0z5inYPD99zBbh8v3ldfa4DCVmsA0F6T9gOaYxhVRCHAmVaaqkFCQSDEGscKKgiBTGaZ4JipggmuWKZhopyiI8BQ8H3cbZrZat7mRpFG-cqYTbcysMn22WY3dMqtpyhGPIICIR6yXgQUI6673T-YlGkA-u8qOrfHS1R8gfRJpWtMbWrROm_A8MD6Dxrd6dDgn3xQnFNOGUJHyO52hN31Y8wT94w4q-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><source>Project Euclid Complete</source><creator>Broaddus, Nathan</creator><creatorcontrib>Broaddus, Nathan</creatorcontrib><description>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-1645634</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>2$-manifolds ; 30Fxx ; 32G15 ; 57N05 ; Moduli of Riemann surfaces ; Teichmüller theory [See also 14H15 ; Topology of $E^2</subject><ispartof>Duke mathematical journal, 2012-07, Vol.161 (10), p.1943-1969, Article 1943</ispartof><rights>Copyright 2012 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</citedby><cites>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,922,27905,27906</link.rule.ids></links><search><creatorcontrib>Broaddus, Nathan</creatorcontrib><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><title>Duke mathematical journal</title><description>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</description><subject>2$-manifolds</subject><subject>30Fxx</subject><subject>32G15</subject><subject>57N05</subject><subject>Moduli of Riemann surfaces</subject><subject>Teichmüller theory [See also 14H15</subject><subject>Topology of $E^2</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWwM-YPBOw4sZ0N1AJFKkJV6Ww5thNckjiyE9T-exKadmBgudN9PO-dXgBuEbxDEUruIUQRhWkcIhInBMdnYIKSmIYUp-wcTIZxOMwvwZX326FMSTQBq4WtbGmLfWDzoP3Ugezcdx9t1ZR6F4ha_XbXrTZ1pl0RVFZ1pT5uV6JpTF0EshTeB4WzXXMNLnJRen0z5inYPD99zBbh8v3ldfa4DCVmsA0F6T9gOaYxhVRCHAmVaaqkFCQSDEGscKKgiBTGaZ4JipggmuWKZhopyiI8BQ8H3cbZrZat7mRpFG-cqYTbcysMn22WY3dMqtpyhGPIICIR6yXgQUI6673T-YlGkA-u8qOrfHS1R8gfRJpWtMbWrROm_A8MD6Dxrd6dDgn3xQnFNOGUJHyO52hN31Y8wT94w4q-</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Broaddus, Nathan</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120715</creationdate><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><author>Broaddus, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>2$-manifolds</topic><topic>30Fxx</topic><topic>32G15</topic><topic>57N05</topic><topic>Moduli of Riemann surfaces</topic><topic>Teichmüller theory [See also 14H15</topic><topic>Topology of $E^2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broaddus, Nathan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broaddus, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homology of the curve complex and the Steinberg module of the mapping class group</atitle><jtitle>Duke mathematical journal</jtitle><date>2012-07-15</date><risdate>2012</risdate><volume>161</volume><issue>10</issue><spage>1943</spage><epage>1969</epage><pages>1943-1969</pages><artnum>1943</artnum><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-1645634</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2012-07, Vol.161 (10), p.1943-1969, Article 1943
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1340801628
source Project Euclid Complete
subjects 2$-manifolds
30Fxx
32G15
57N05
Moduli of Riemann surfaces
Teichmüller theory [See also 14H15
Topology of $E^2
title Homology of the curve complex and the Steinberg module of the mapping class group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homology%20of%20the%20curve%20complex%20and%20the%20Steinberg%20module%20of%20the%20mapping%20class%20group&rft.jtitle=Duke%20mathematical%20journal&rft.au=Broaddus,%20Nathan&rft.date=2012-07-15&rft.volume=161&rft.issue=10&rft.spage=1943&rft.epage=1969&rft.pages=1943-1969&rft.artnum=1943&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-1645634&rft_dat=%3Cistex_proje%3Eark_67375_765_D3D1S7MQ_5%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true