Homology of the curve complex and the Steinberg module of the mapping class group
By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the c...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2012-07, Vol.161 (10), p.1943-1969, Article 1943 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1969 |
---|---|
container_issue | 10 |
container_start_page | 1943 |
container_title | Duke mathematical journal |
container_volume | 161 |
creator | Broaddus, Nathan |
description | By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex. |
doi_str_mv | 10.1215/00127094-1645634 |
format | Article |
fullrecord | <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1340801628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_D3D1S7MQ_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWwM-YPBOw4sZ0N1AJFKkJV6Ww5thNckjiyE9T-exKadmBgudN9PO-dXgBuEbxDEUruIUQRhWkcIhInBMdnYIKSmIYUp-wcTIZxOMwvwZX326FMSTQBq4WtbGmLfWDzoP3Ugezcdx9t1ZR6F4ha_XbXrTZ1pl0RVFZ1pT5uV6JpTF0EshTeB4WzXXMNLnJRen0z5inYPD99zBbh8v3ldfa4DCVmsA0F6T9gOaYxhVRCHAmVaaqkFCQSDEGscKKgiBTGaZ4JipggmuWKZhopyiI8BQ8H3cbZrZat7mRpFG-cqYTbcysMn22WY3dMqtpyhGPIICIR6yXgQUI6673T-YlGkA-u8qOrfHS1R8gfRJpWtMbWrROm_A8MD6Dxrd6dDgn3xQnFNOGUJHyO52hN31Y8wT94w4q-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><source>Project Euclid Complete</source><creator>Broaddus, Nathan</creator><creatorcontrib>Broaddus, Nathan</creatorcontrib><description>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-1645634</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>2$-manifolds ; 30Fxx ; 32G15 ; 57N05 ; Moduli of Riemann surfaces ; Teichmüller theory [See also 14H15 ; Topology of $E^2</subject><ispartof>Duke mathematical journal, 2012-07, Vol.161 (10), p.1943-1969, Article 1943</ispartof><rights>Copyright 2012 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</citedby><cites>FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,922,27905,27906</link.rule.ids></links><search><creatorcontrib>Broaddus, Nathan</creatorcontrib><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><title>Duke mathematical journal</title><description>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</description><subject>2$-manifolds</subject><subject>30Fxx</subject><subject>32G15</subject><subject>57N05</subject><subject>Moduli of Riemann surfaces</subject><subject>Teichmüller theory [See also 14H15</subject><subject>Topology of $E^2</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWwM-YPBOw4sZ0N1AJFKkJV6Ww5thNckjiyE9T-exKadmBgudN9PO-dXgBuEbxDEUruIUQRhWkcIhInBMdnYIKSmIYUp-wcTIZxOMwvwZX326FMSTQBq4WtbGmLfWDzoP3Ugezcdx9t1ZR6F4ha_XbXrTZ1pl0RVFZ1pT5uV6JpTF0EshTeB4WzXXMNLnJRen0z5inYPD99zBbh8v3ldfa4DCVmsA0F6T9gOaYxhVRCHAmVaaqkFCQSDEGscKKgiBTGaZ4JipggmuWKZhopyiI8BQ8H3cbZrZat7mRpFG-cqYTbcysMn22WY3dMqtpyhGPIICIR6yXgQUI6673T-YlGkA-u8qOrfHS1R8gfRJpWtMbWrROm_A8MD6Dxrd6dDgn3xQnFNOGUJHyO52hN31Y8wT94w4q-</recordid><startdate>20120715</startdate><enddate>20120715</enddate><creator>Broaddus, Nathan</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120715</creationdate><title>Homology of the curve complex and the Steinberg module of the mapping class group</title><author>Broaddus, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a61298f374707c032adbe7dcca62a8103d35d0a2d339fba718a6e8fd7be1d7823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>2$-manifolds</topic><topic>30Fxx</topic><topic>32G15</topic><topic>57N05</topic><topic>Moduli of Riemann surfaces</topic><topic>Teichmüller theory [See also 14H15</topic><topic>Topology of $E^2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broaddus, Nathan</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broaddus, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homology of the curve complex and the Steinberg module of the mapping class group</atitle><jtitle>Duke mathematical journal</jtitle><date>2012-07-15</date><risdate>2012</risdate><volume>161</volume><issue>10</issue><spage>1943</spage><epage>1969</epage><pages>1943-1969</pages><artnum>1943</artnum><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion-free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mapping class group. It was previously proved that the curve complex has the homotopy type of a bouquet of spheres. Here, we give the first explicit homologically nontrivial sphere in the curve complex and show that under the action of the mapping class group, the orbit of this homology class generates the reduced homology of the curve complex.</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-1645634</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2012-07, Vol.161 (10), p.1943-1969, Article 1943 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1340801628 |
source | Project Euclid Complete |
subjects | 2$-manifolds 30Fxx 32G15 57N05 Moduli of Riemann surfaces Teichmüller theory [See also 14H15 Topology of $E^2 |
title | Homology of the curve complex and the Steinberg module of the mapping class group |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homology%20of%20the%20curve%20complex%20and%20the%20Steinberg%20module%20of%20the%20mapping%20class%20group&rft.jtitle=Duke%20mathematical%20journal&rft.au=Broaddus,%20Nathan&rft.date=2012-07-15&rft.volume=161&rft.issue=10&rft.spage=1943&rft.epage=1969&rft.pages=1943-1969&rft.artnum=1943&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-1645634&rft_dat=%3Cistex_proje%3Eark_67375_765_D3D1S7MQ_5%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |