Symmetry of embedded genus 1 helicoids

In this article, we use the Lopez-Ros deformation to show that any embedded genus 1 helicoid (or “genus-one helicoid”) must be symmetric with respect to rotation by 180 ° around a normal line. This partially answers a conjecture of Bobenko. We also show that this symmetry holds for an embedded genus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2011-07, Vol.159 (1), p.83-97
Hauptverfasser: Bernstein, Jacob, Breiner, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 83
container_title Duke mathematical journal
container_volume 159
creator Bernstein, Jacob
Breiner, Christine
description In this article, we use the Lopez-Ros deformation to show that any embedded genus 1 helicoid (or “genus-one helicoid”) must be symmetric with respect to rotation by 180 ° around a normal line. This partially answers a conjecture of Bobenko. We also show that this symmetry holds for an embedded genus k helicoid Σ , provided that the underlying conformal structure of Σ is hyperelliptic.
doi_str_mv 10.1215/00127094-1384791
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1310416363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_GXZM859S_Q</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-93166e5a1557d2b345fc91f5e09fc1fd0fb68f0e6114931e9275befaca9d03</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqWwM2ZiM_jFsR1voAoKUhGCgoRYLMd-hpSGVHYq0X9Po4ZOp_fu7huOkHNgl5CDuGIMcsV0QYGXhdJwQEYgCkUV1-UhGfU27f1jcpLSoj-1zEfkYr5pGuziJmtDhk2F3qPPPvFnnTLIvnBZu7b26ZQcBbtMeDbomLzc3b5O7unsafowuZlRx3nZUc1BShQWhFA-r3ghgtMQBDIdHATPQiXLwFACFNss6lyJCoN1VnvGx-R6B13FdoGuw7Vb1t6sYt3YuDGtrc3kbTZ8B_HNwgAHVoDkkm8RbIdwsU0pYti3gZl-J_O_kxl22lborlKnDn_3eRu_jVRcCaOkMNP3j8dS6Ll55n93V2kO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry of embedded genus 1 helicoids</title><source>Project Euclid Complete</source><creator>Bernstein, Jacob ; Breiner, Christine</creator><creatorcontrib>Bernstein, Jacob ; Breiner, Christine</creatorcontrib><description>In this article, we use the Lopez-Ros deformation to show that any embedded genus 1 helicoid (or “genus-one helicoid”) must be symmetric with respect to rotation by 180 ° around a normal line. This partially answers a conjecture of Bobenko. We also show that this symmetry holds for an embedded genus k helicoid Σ , provided that the underlying conformal structure of Σ is hyperelliptic.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-1384791</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>14H40 ; 37K10 ; bi-Hamiltonian structures ; Completely integrable systems ; etc. ; hierarchies (KdV ; integrability tests ; Jacobians ; Prym varieties [See also 32G20] ; Toda</subject><ispartof>Duke mathematical journal, 2011-07, Vol.159 (1), p.83-97</ispartof><rights>Copyright 2011 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-93166e5a1557d2b345fc91f5e09fc1fd0fb68f0e6114931e9275befaca9d03</citedby><cites>FETCH-LOGICAL-c338t-93166e5a1557d2b345fc91f5e09fc1fd0fb68f0e6114931e9275befaca9d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Bernstein, Jacob</creatorcontrib><creatorcontrib>Breiner, Christine</creatorcontrib><title>Symmetry of embedded genus 1 helicoids</title><title>Duke mathematical journal</title><description>In this article, we use the Lopez-Ros deformation to show that any embedded genus 1 helicoid (or “genus-one helicoid”) must be symmetric with respect to rotation by 180 ° around a normal line. This partially answers a conjecture of Bobenko. We also show that this symmetry holds for an embedded genus k helicoid Σ , provided that the underlying conformal structure of Σ is hyperelliptic.</description><subject>14H40</subject><subject>37K10</subject><subject>bi-Hamiltonian structures</subject><subject>Completely integrable systems</subject><subject>etc.</subject><subject>hierarchies (KdV</subject><subject>integrability tests</subject><subject>Jacobians</subject><subject>Prym varieties [See also 32G20]</subject><subject>Toda</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqWwM2ZiM_jFsR1voAoKUhGCgoRYLMd-hpSGVHYq0X9Po4ZOp_fu7huOkHNgl5CDuGIMcsV0QYGXhdJwQEYgCkUV1-UhGfU27f1jcpLSoj-1zEfkYr5pGuziJmtDhk2F3qPPPvFnnTLIvnBZu7b26ZQcBbtMeDbomLzc3b5O7unsafowuZlRx3nZUc1BShQWhFA-r3ghgtMQBDIdHATPQiXLwFACFNss6lyJCoN1VnvGx-R6B13FdoGuw7Vb1t6sYt3YuDGtrc3kbTZ8B_HNwgAHVoDkkm8RbIdwsU0pYti3gZl-J_O_kxl22lborlKnDn_3eRu_jVRcCaOkMNP3j8dS6Ll55n93V2kO</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Bernstein, Jacob</creator><creator>Breiner, Christine</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110715</creationdate><title>Symmetry of embedded genus 1 helicoids</title><author>Bernstein, Jacob ; Breiner, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-93166e5a1557d2b345fc91f5e09fc1fd0fb68f0e6114931e9275befaca9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>14H40</topic><topic>37K10</topic><topic>bi-Hamiltonian structures</topic><topic>Completely integrable systems</topic><topic>etc.</topic><topic>hierarchies (KdV</topic><topic>integrability tests</topic><topic>Jacobians</topic><topic>Prym varieties [See also 32G20]</topic><topic>Toda</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernstein, Jacob</creatorcontrib><creatorcontrib>Breiner, Christine</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernstein, Jacob</au><au>Breiner, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry of embedded genus 1 helicoids</atitle><jtitle>Duke mathematical journal</jtitle><date>2011-07-15</date><risdate>2011</risdate><volume>159</volume><issue>1</issue><spage>83</spage><epage>97</epage><pages>83-97</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>In this article, we use the Lopez-Ros deformation to show that any embedded genus 1 helicoid (or “genus-one helicoid”) must be symmetric with respect to rotation by 180 ° around a normal line. This partially answers a conjecture of Bobenko. We also show that this symmetry holds for an embedded genus k helicoid Σ , provided that the underlying conformal structure of Σ is hyperelliptic.</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-1384791</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2011-07, Vol.159 (1), p.83-97
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1310416363
source Project Euclid Complete
subjects 14H40
37K10
bi-Hamiltonian structures
Completely integrable systems
etc.
hierarchies (KdV
integrability tests
Jacobians
Prym varieties [See also 32G20]
Toda
title Symmetry of embedded genus 1 helicoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20of%20embedded%20genus%201%20helicoids&rft.jtitle=Duke%20mathematical%20journal&rft.au=Bernstein,%20Jacob&rft.date=2011-07-15&rft.volume=159&rft.issue=1&rft.spage=83&rft.epage=97&rft.pages=83-97&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-1384791&rft_dat=%3Cistex_proje%3Eark_67375_765_GXZM859S_Q%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true