Collisions and spirals of Loewner traces

We analyze Loewner traces driven by functions asymptotic to κ 1 − t . We prove a stability result when κ ≠ 4 , and we show that κ = 4 can lead to nonlocally connected hulls. As a consequence, we obtain a driving term λ ( t ) so that the hulls driven by κ λ ( t ) are generated by a continuous curve f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2010-09, Vol.154 (3), p.527-573
Hauptverfasser: Lind, Joan, Marshall, Donald E., Rohde, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 3
container_start_page 527
container_title Duke mathematical journal
container_volume 154
creator Lind, Joan
Marshall, Donald E.
Rohde, Steffen
description We analyze Loewner traces driven by functions asymptotic to κ 1 − t . We prove a stability result when κ ≠ 4 , and we show that κ = 4 can lead to nonlocally connected hulls. As a consequence, we obtain a driving term λ ( t ) so that the hulls driven by κ λ ( t ) are generated by a continuous curve for all κ > 0 with κ ≠ 4 , but not when κ = 4 , so that the space of driving terms with continuous traces is not convex. As a byproduct, we obtain an explicit construction of the traces driven by κ 1 − t and a conceptual proof of the corresponding results of Kager, Nienhuis, and Kadanoff.
doi_str_mv 10.1215/00127094-2010-045
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1283865312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_M1W1V1S2_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-602bcd3e2fb06e367a8d7d5f9b3e32b85b2381fd67b7754ec1c03c7d16fc2ec03</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwANxy5GLw2rGd3EARFKQgDlA4Wo5_JJe0ruwg4O1J1NLT7O7sN4dB6BLINVDgN4QAlaQuMSVAMCn5EZoBLyWWrK6O0Wzy8fRwis5yXk1rLegMXTWx70MOcZMLvbFF3oak-1xEX7TRfW9cKoakjcvn6MSPhrvY6xwtH-7fmkfcviyemrsWG1aSAQtCO2OZo74jwjEhdWWl5b7umGO0q3hHWQXeCtlJyUtnwBBmpAXhDXXjPEe3u9xtiitnBvdl-mDVNoW1Tr8q6qCaZbu_7sWuVwpoxSrBGdAxAnYRJsWck_MHGoia2lL_bampLTW2NTJ4x4Q8uJ8DoNOnEpJJrqTg6hk-4B1eqSLsD9pja2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collisions and spirals of Loewner traces</title><source>Project Euclid Complete</source><creator>Lind, Joan ; Marshall, Donald E. ; Rohde, Steffen</creator><creatorcontrib>Lind, Joan ; Marshall, Donald E. ; Rohde, Steffen</creatorcontrib><description>We analyze Loewner traces driven by functions asymptotic to κ 1 − t . We prove a stability result when κ ≠ 4 , and we show that κ = 4 can lead to nonlocally connected hulls. As a consequence, we obtain a driving term λ ( t ) so that the hulls driven by κ λ ( t ) are generated by a continuous curve for all κ &gt; 0 with κ ≠ 4 , but not when κ = 4 , so that the space of driving terms with continuous traces is not convex. As a byproduct, we obtain an explicit construction of the traces driven by κ 1 − t and a conceptual proof of the corresponding results of Kager, Nienhuis, and Kadanoff.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2010-045</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>30C20 ; 30C30 ; 30C45 ; 30C62 ; bounded rotation ; Conformal mappings of special domains ; convex ; etc. ; Numerical methods in conformal mapping theory [See also 65E05] ; Quasiconformal mappings in the plane ; Special classes of univalent and multivalent functions (starlike</subject><ispartof>Duke mathematical journal, 2010-09, Vol.154 (3), p.527-573</ispartof><rights>Copyright 2010 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-602bcd3e2fb06e367a8d7d5f9b3e32b85b2381fd67b7754ec1c03c7d16fc2ec03</citedby><cites>FETCH-LOGICAL-c340t-602bcd3e2fb06e367a8d7d5f9b3e32b85b2381fd67b7754ec1c03c7d16fc2ec03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27903,27904</link.rule.ids></links><search><creatorcontrib>Lind, Joan</creatorcontrib><creatorcontrib>Marshall, Donald E.</creatorcontrib><creatorcontrib>Rohde, Steffen</creatorcontrib><title>Collisions and spirals of Loewner traces</title><title>Duke mathematical journal</title><description>We analyze Loewner traces driven by functions asymptotic to κ 1 − t . We prove a stability result when κ ≠ 4 , and we show that κ = 4 can lead to nonlocally connected hulls. As a consequence, we obtain a driving term λ ( t ) so that the hulls driven by κ λ ( t ) are generated by a continuous curve for all κ &gt; 0 with κ ≠ 4 , but not when κ = 4 , so that the space of driving terms with continuous traces is not convex. As a byproduct, we obtain an explicit construction of the traces driven by κ 1 − t and a conceptual proof of the corresponding results of Kager, Nienhuis, and Kadanoff.</description><subject>30C20</subject><subject>30C30</subject><subject>30C45</subject><subject>30C62</subject><subject>bounded rotation</subject><subject>Conformal mappings of special domains</subject><subject>convex</subject><subject>etc.</subject><subject>Numerical methods in conformal mapping theory [See also 65E05]</subject><subject>Quasiconformal mappings in the plane</subject><subject>Special classes of univalent and multivalent functions (starlike</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwANxy5GLw2rGd3EARFKQgDlA4Wo5_JJe0ruwg4O1J1NLT7O7sN4dB6BLINVDgN4QAlaQuMSVAMCn5EZoBLyWWrK6O0Wzy8fRwis5yXk1rLegMXTWx70MOcZMLvbFF3oak-1xEX7TRfW9cKoakjcvn6MSPhrvY6xwtH-7fmkfcviyemrsWG1aSAQtCO2OZo74jwjEhdWWl5b7umGO0q3hHWQXeCtlJyUtnwBBmpAXhDXXjPEe3u9xtiitnBvdl-mDVNoW1Tr8q6qCaZbu_7sWuVwpoxSrBGdAxAnYRJsWck_MHGoia2lL_bampLTW2NTJ4x4Q8uJ8DoNOnEpJJrqTg6hk-4B1eqSLsD9pja2A</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Lind, Joan</creator><creator>Marshall, Donald E.</creator><creator>Rohde, Steffen</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100915</creationdate><title>Collisions and spirals of Loewner traces</title><author>Lind, Joan ; Marshall, Donald E. ; Rohde, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-602bcd3e2fb06e367a8d7d5f9b3e32b85b2381fd67b7754ec1c03c7d16fc2ec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>30C20</topic><topic>30C30</topic><topic>30C45</topic><topic>30C62</topic><topic>bounded rotation</topic><topic>Conformal mappings of special domains</topic><topic>convex</topic><topic>etc.</topic><topic>Numerical methods in conformal mapping theory [See also 65E05]</topic><topic>Quasiconformal mappings in the plane</topic><topic>Special classes of univalent and multivalent functions (starlike</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lind, Joan</creatorcontrib><creatorcontrib>Marshall, Donald E.</creatorcontrib><creatorcontrib>Rohde, Steffen</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lind, Joan</au><au>Marshall, Donald E.</au><au>Rohde, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collisions and spirals of Loewner traces</atitle><jtitle>Duke mathematical journal</jtitle><date>2010-09-15</date><risdate>2010</risdate><volume>154</volume><issue>3</issue><spage>527</spage><epage>573</epage><pages>527-573</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>We analyze Loewner traces driven by functions asymptotic to κ 1 − t . We prove a stability result when κ ≠ 4 , and we show that κ = 4 can lead to nonlocally connected hulls. As a consequence, we obtain a driving term λ ( t ) so that the hulls driven by κ λ ( t ) are generated by a continuous curve for all κ &gt; 0 with κ ≠ 4 , but not when κ = 4 , so that the space of driving terms with continuous traces is not convex. As a byproduct, we obtain an explicit construction of the traces driven by κ 1 − t and a conceptual proof of the corresponding results of Kager, Nienhuis, and Kadanoff.</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-2010-045</doi><tpages>47</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2010-09, Vol.154 (3), p.527-573
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1283865312
source Project Euclid Complete
subjects 30C20
30C30
30C45
30C62
bounded rotation
Conformal mappings of special domains
convex
etc.
Numerical methods in conformal mapping theory [See also 65E05]
Quasiconformal mappings in the plane
Special classes of univalent and multivalent functions (starlike
title Collisions and spirals of Loewner traces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collisions%20and%20spirals%20of%20Loewner%20traces&rft.jtitle=Duke%20mathematical%20journal&rft.au=Lind,%20Joan&rft.date=2010-09-15&rft.volume=154&rft.issue=3&rft.spage=527&rft.epage=573&rft.pages=527-573&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2010-045&rft_dat=%3Cistex_proje%3Eark_67375_765_M1W1V1S2_0%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true