On the Riemannian Penrose inequality in dimensions less than eight
The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. Mo...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2009-05, Vol.148 (1), p.81-106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | Duke mathematical journal |
container_volume | 148 |
creator | Bray, Hubert L. Lee, Dan A. |
description | The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin |
doi_str_mv | 10.1215/00127094-2009-020 |
format | Article |
fullrecord | <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1240432192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_3CQSG5GL_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAezyA4GxHTv1DoigIEUqr64tx5lQl8QpcSrRvydRS1fzuudKcwm5pnBDGRW3AJSloJKYAagYGJyQCRVJGqdczU7JZLzHo-CcXISwHkcl2YQ8LHzUrzB6d9gY753x0Sv6rg0YOY8_W1O7fje0Ueka9MG1PkQ1hjBAgxTd16q_JGeVqQNeHeqULJ8eP7PnOF_MX7L7PLYJyD7mwKxUqZAgGTcpK7AEawsQJqFKViBUxZkquGECFa0AERiDWQHSSlaakk_J3d5307VrtD1ube1KvelcY7qdbo3T2TI_bA-lbNaasgQSzqhigwXdW9jhw9BhdaQp6DFH_Z-jHnPUQ44DE-8ZF3r8PQKm-9Yy5anQqRSaZ28fczHPNed_e-10Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Riemannian Penrose inequality in dimensions less than eight</title><source>Project Euclid Complete</source><creator>Bray, Hubert L. ; Lee, Dan A.</creator><creatorcontrib>Bray, Hubert L. ; Lee, Dan A.</creatorcontrib><description>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2009-020</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>53C20 ; 58B20 ; 83C57 ; Black holes ; Global Riemannian geometry ; including pinching [See also 31C12</subject><ispartof>Duke mathematical journal, 2009-05, Vol.148 (1), p.81-106</ispartof><rights>Copyright 2009 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</citedby><cites>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27923,27924</link.rule.ids></links><search><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Lee, Dan A.</creatorcontrib><title>On the Riemannian Penrose inequality in dimensions less than eight</title><title>Duke mathematical journal</title><description>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</description><subject>53C20</subject><subject>58B20</subject><subject>83C57</subject><subject>Black holes</subject><subject>Global Riemannian geometry</subject><subject>including pinching [See also 31C12</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAezyA4GxHTv1DoigIEUqr64tx5lQl8QpcSrRvydRS1fzuudKcwm5pnBDGRW3AJSloJKYAagYGJyQCRVJGqdczU7JZLzHo-CcXISwHkcl2YQ8LHzUrzB6d9gY753x0Sv6rg0YOY8_W1O7fje0Ueka9MG1PkQ1hjBAgxTd16q_JGeVqQNeHeqULJ8eP7PnOF_MX7L7PLYJyD7mwKxUqZAgGTcpK7AEawsQJqFKViBUxZkquGECFa0AERiDWQHSSlaakk_J3d5307VrtD1ube1KvelcY7qdbo3T2TI_bA-lbNaasgQSzqhigwXdW9jhw9BhdaQp6DFH_Z-jHnPUQ44DE-8ZF3r8PQKm-9Yy5anQqRSaZ28fczHPNed_e-10Jw</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Bray, Hubert L.</creator><creator>Lee, Dan A.</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090515</creationdate><title>On the Riemannian Penrose inequality in dimensions less than eight</title><author>Bray, Hubert L. ; Lee, Dan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>53C20</topic><topic>58B20</topic><topic>83C57</topic><topic>Black holes</topic><topic>Global Riemannian geometry</topic><topic>including pinching [See also 31C12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Lee, Dan A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bray, Hubert L.</au><au>Lee, Dan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Riemannian Penrose inequality in dimensions less than eight</atitle><jtitle>Duke mathematical journal</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>148</volume><issue>1</issue><spage>81</spage><epage>106</epage><pages>81-106</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-2009-020</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-7094 |
ispartof | Duke mathematical journal, 2009-05, Vol.148 (1), p.81-106 |
issn | 0012-7094 1547-7398 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1240432192 |
source | Project Euclid Complete |
subjects | 53C20 58B20 83C57 Black holes Global Riemannian geometry including pinching [See also 31C12 |
title | On the Riemannian Penrose inequality in dimensions less than eight |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Riemannian%20Penrose%20inequality%20in%20dimensions%20less%20than%20eight&rft.jtitle=Duke%20mathematical%20journal&rft.au=Bray,%20Hubert%20L.&rft.date=2009-05-15&rft.volume=148&rft.issue=1&rft.spage=81&rft.epage=106&rft.pages=81-106&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2009-020&rft_dat=%3Cistex_proje%3Eark_67375_765_3CQSG5GL_3%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |