On the Riemannian Penrose inequality in dimensions less than eight

The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2009-05, Vol.148 (1), p.81-106
Hauptverfasser: Bray, Hubert L., Lee, Dan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 1
container_start_page 81
container_title Duke mathematical journal
container_volume 148
creator Bray, Hubert L.
Lee, Dan A.
description The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin
doi_str_mv 10.1215/00127094-2009-020
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1240432192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_3CQSG5GL_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAezyA4GxHTv1DoigIEUqr64tx5lQl8QpcSrRvydRS1fzuudKcwm5pnBDGRW3AJSloJKYAagYGJyQCRVJGqdczU7JZLzHo-CcXISwHkcl2YQ8LHzUrzB6d9gY753x0Sv6rg0YOY8_W1O7fje0Ueka9MG1PkQ1hjBAgxTd16q_JGeVqQNeHeqULJ8eP7PnOF_MX7L7PLYJyD7mwKxUqZAgGTcpK7AEawsQJqFKViBUxZkquGECFa0AERiDWQHSSlaakk_J3d5307VrtD1ube1KvelcY7qdbo3T2TI_bA-lbNaasgQSzqhigwXdW9jhw9BhdaQp6DFH_Z-jHnPUQ44DE-8ZF3r8PQKm-9Yy5anQqRSaZ28fczHPNed_e-10Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Riemannian Penrose inequality in dimensions less than eight</title><source>Project Euclid Complete</source><creator>Bray, Hubert L. ; Lee, Dan A.</creator><creatorcontrib>Bray, Hubert L. ; Lee, Dan A.</creatorcontrib><description>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2009-020</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>53C20 ; 58B20 ; 83C57 ; Black holes ; Global Riemannian geometry ; including pinching [See also 31C12</subject><ispartof>Duke mathematical journal, 2009-05, Vol.148 (1), p.81-106</ispartof><rights>Copyright 2009 Duke University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</citedby><cites>FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27923,27924</link.rule.ids></links><search><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Lee, Dan A.</creatorcontrib><title>On the Riemannian Penrose inequality in dimensions less than eight</title><title>Duke mathematical journal</title><description>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</description><subject>53C20</subject><subject>58B20</subject><subject>83C57</subject><subject>Black holes</subject><subject>Global Riemannian geometry</subject><subject>including pinching [See also 31C12</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAezyA4GxHTv1DoigIEUqr64tx5lQl8QpcSrRvydRS1fzuudKcwm5pnBDGRW3AJSloJKYAagYGJyQCRVJGqdczU7JZLzHo-CcXISwHkcl2YQ8LHzUrzB6d9gY753x0Sv6rg0YOY8_W1O7fje0Ueka9MG1PkQ1hjBAgxTd16q_JGeVqQNeHeqULJ8eP7PnOF_MX7L7PLYJyD7mwKxUqZAgGTcpK7AEawsQJqFKViBUxZkquGECFa0AERiDWQHSSlaakk_J3d5307VrtD1ube1KvelcY7qdbo3T2TI_bA-lbNaasgQSzqhigwXdW9jhw9BhdaQp6DFH_Z-jHnPUQ44DE-8ZF3r8PQKm-9Yy5anQqRSaZ28fczHPNed_e-10Jw</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Bray, Hubert L.</creator><creator>Lee, Dan A.</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090515</creationdate><title>On the Riemannian Penrose inequality in dimensions less than eight</title><author>Bray, Hubert L. ; Lee, Dan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-302c697560623a72bed0ccb05a4196f059f329b3a25e91f0ee02208b06c62dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>53C20</topic><topic>58B20</topic><topic>83C57</topic><topic>Black holes</topic><topic>Global Riemannian geometry</topic><topic>including pinching [See also 31C12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bray, Hubert L.</creatorcontrib><creatorcontrib>Lee, Dan A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bray, Hubert L.</au><au>Lee, Dan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Riemannian Penrose inequality in dimensions less than eight</atitle><jtitle>Duke mathematical journal</jtitle><date>2009-05-15</date><risdate>2009</risdate><volume>148</volume><issue>1</issue><spage>81</spage><epage>106</epage><pages>81-106</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>The positive mass theorem states that a complete asymptotically flat manifold of nonnegative scalar curvature has nonnegative mass and that equality is achieved only for the Euclidean metric. The Riemannian Penrose inequality provides a sharp lower bound for the mass when black holes are present. More precisely, this lower bound is given in terms of the area of an outermost minimal hypersurface, and equality is achieved only for Schwarzschild metrics. The Riemannian Penrose inequality was first proved in three dimensions in 1997 by G. Huisken and T. Ilmanen for the case of a single black hole (see [HI]). In 1999, Bray extended this result to the general case of multiple black holes using a different technique (see [Br]). In this article, we extend the technique of [Br] to dimensions less than eight. Part of the argument is contained in a companion article by Lee [L]. The equality case of the theorem requires the added assumption that the manifold be spin</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-2009-020</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2009-05, Vol.148 (1), p.81-106
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1240432192
source Project Euclid Complete
subjects 53C20
58B20
83C57
Black holes
Global Riemannian geometry
including pinching [See also 31C12
title On the Riemannian Penrose inequality in dimensions less than eight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Riemannian%20Penrose%20inequality%20in%20dimensions%20less%20than%20eight&rft.jtitle=Duke%20mathematical%20journal&rft.au=Bray,%20Hubert%20L.&rft.date=2009-05-15&rft.volume=148&rft.issue=1&rft.spage=81&rft.epage=106&rft.pages=81-106&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2009-020&rft_dat=%3Cistex_proje%3Eark_67375_765_3CQSG5GL_3%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true