No mass drop for mean curvature flow of mean convex hypersurfaces

A possible evolution of a compact hypersurface in R n + 1 by mean curvature past singularities is defined via the level set flow. In the case where the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2008-04, Vol.142 (2), p.283-312
Hauptverfasser: Metzger, Jan, Schulze, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 2
container_start_page 283
container_title Duke mathematical journal
container_volume 142
creator Metzger, Jan
Schulze, Felix
description A possible evolution of a compact hypersurface in R n + 1 by mean curvature past singularities is defined via the level set flow. In the case where the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equality. As a consequence, we obtain the fact that no mass drop can occur along such a flow. A further application of the techniques used above is to give a new variational formulation for mean curvature flow of mean convex hypersurfaces
doi_str_mv 10.1215/00127094-2008-007
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1206642156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_4J051PK9_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6d30249ac6652e70f32c3d26d2f31cbf58afbfa5bf0ba0c01725f9243864f50e3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwANz8AoG1HdvJjarivwIOVOJmOY4tUpo6spPSvj2JGnoazezOHD6ErgncEEr4LQChEvI0oQBZAiBP0ITwVCaS5dkpmgz3ZHg4RxcxrgabCzpBszePax0jLoNvsPMB11ZvsOnCVrddsNit_S_2boz9Zmt3-Hvf2BC74LSx8RKdOb2O9mrUKVo-3H_On5LF--PzfLZIDMtYm4iSAU1zbYTg1EpwjBpWUlFSx4gpHM-0K5zmhYNCgwEiKXc5TVkmUsfBsim6O-w2wa-saW1n1lWpmlDVOuyV15WaLxdjOkpZrxShIETaMxL9BDlMmOBjDNYd2wTUgFH9Y1QDxt7JvpMcOlVs7e5Y0OFHCckkV1Jwlb4AJx-vufpif4lYdGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>No mass drop for mean curvature flow of mean convex hypersurfaces</title><source>Project Euclid Complete</source><creator>Metzger, Jan ; Schulze, Felix</creator><creatorcontrib>Metzger, Jan ; Schulze, Felix</creatorcontrib><description>A possible evolution of a compact hypersurface in R n + 1 by mean curvature past singularities is defined via the level set flow. In the case where the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equality. As a consequence, we obtain the fact that no mass drop can occur along such a flow. A further application of the techniques used above is to give a new variational formulation for mean curvature flow of mean convex hypersurfaces</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/00127094-2008-007</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>49Q20 ; 53C44 ; etc. ; Geometric evolution equations (mean curvature flow ; Ricci flow ; Variational problems in a geometric measure-theoretic setting</subject><ispartof>Duke mathematical journal, 2008-04, Vol.142 (2), p.283-312</ispartof><rights>Copyright 2008 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6d30249ac6652e70f32c3d26d2f31cbf58afbfa5bf0ba0c01725f9243864f50e3</citedby><cites>FETCH-LOGICAL-c383t-6d30249ac6652e70f32c3d26d2f31cbf58afbfa5bf0ba0c01725f9243864f50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,926,27924,27925</link.rule.ids></links><search><creatorcontrib>Metzger, Jan</creatorcontrib><creatorcontrib>Schulze, Felix</creatorcontrib><title>No mass drop for mean curvature flow of mean convex hypersurfaces</title><title>Duke mathematical journal</title><description>A possible evolution of a compact hypersurface in R n + 1 by mean curvature past singularities is defined via the level set flow. In the case where the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equality. As a consequence, we obtain the fact that no mass drop can occur along such a flow. A further application of the techniques used above is to give a new variational formulation for mean curvature flow of mean convex hypersurfaces</description><subject>49Q20</subject><subject>53C44</subject><subject>etc.</subject><subject>Geometric evolution equations (mean curvature flow</subject><subject>Ricci flow</subject><subject>Variational problems in a geometric measure-theoretic setting</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwANz8AoG1HdvJjarivwIOVOJmOY4tUpo6spPSvj2JGnoazezOHD6ErgncEEr4LQChEvI0oQBZAiBP0ITwVCaS5dkpmgz3ZHg4RxcxrgabCzpBszePax0jLoNvsPMB11ZvsOnCVrddsNit_S_2boz9Zmt3-Hvf2BC74LSx8RKdOb2O9mrUKVo-3H_On5LF--PzfLZIDMtYm4iSAU1zbYTg1EpwjBpWUlFSx4gpHM-0K5zmhYNCgwEiKXc5TVkmUsfBsim6O-w2wa-saW1n1lWpmlDVOuyV15WaLxdjOkpZrxShIETaMxL9BDlMmOBjDNYd2wTUgFH9Y1QDxt7JvpMcOlVs7e5Y0OFHCckkV1Jwlb4AJx-vufpif4lYdGQ</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Metzger, Jan</creator><creator>Schulze, Felix</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>No mass drop for mean curvature flow of mean convex hypersurfaces</title><author>Metzger, Jan ; Schulze, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6d30249ac6652e70f32c3d26d2f31cbf58afbfa5bf0ba0c01725f9243864f50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>49Q20</topic><topic>53C44</topic><topic>etc.</topic><topic>Geometric evolution equations (mean curvature flow</topic><topic>Ricci flow</topic><topic>Variational problems in a geometric measure-theoretic setting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzger, Jan</creatorcontrib><creatorcontrib>Schulze, Felix</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzger, Jan</au><au>Schulze, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No mass drop for mean curvature flow of mean convex hypersurfaces</atitle><jtitle>Duke mathematical journal</jtitle><date>2008-04-01</date><risdate>2008</risdate><volume>142</volume><issue>2</issue><spage>283</spage><epage>312</epage><pages>283-312</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>A possible evolution of a compact hypersurface in R n + 1 by mean curvature past singularities is defined via the level set flow. In the case where the initial hypersurface has positive mean curvature, we show that the Brakke flow associated to the level set flow is actually a Brakke flow with equality. As a consequence, we obtain the fact that no mass drop can occur along such a flow. A further application of the techniques used above is to give a new variational formulation for mean curvature flow of mean convex hypersurfaces</abstract><pub>DUKE University Press</pub><doi>10.1215/00127094-2008-007</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2008-04, Vol.142 (2), p.283-312
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1206642156
source Project Euclid Complete
subjects 49Q20
53C44
etc.
Geometric evolution equations (mean curvature flow
Ricci flow
Variational problems in a geometric measure-theoretic setting
title No mass drop for mean curvature flow of mean convex hypersurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20mass%20drop%20for%20mean%20curvature%20flow%20of%20mean%20convex%20hypersurfaces&rft.jtitle=Duke%20mathematical%20journal&rft.au=Metzger,%20Jan&rft.date=2008-04-01&rft.volume=142&rft.issue=2&rft.spage=283&rft.epage=312&rft.pages=283-312&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/00127094-2008-007&rft_dat=%3Cistex_proje%3Eark_67375_765_4J051PK9_X%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true