Naïve noncommutative blowing up
Let B(X,,σ) be the twisted homogeneous coordinate ring of an irreducible variety X over an algebraically closed field k with dim X ≥ 2. Assume that c ∈ X and σ ∈ Aut(X) are in sufficiently general position. We show that if one follows the commutative prescription for blowing up X at c, but in this n...
Gespeichert in:
Veröffentlicht in: | Duke mathematical journal 2005-02, Vol.126 (3), p.491-546 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let B(X,,σ) be the twisted homogeneous coordinate ring of an irreducible variety X over an algebraically closed field k with dim X ≥ 2. Assume that c ∈ X and σ ∈ Aut(X) are in sufficiently general position. We show that if one follows the commutative prescription for blowing up X at c, but in this noncommutative setting, one obtains a noncommutative ring R = R(X,c,,σ) with surprising properties. |
---|---|
ISSN: | 0012-7094 1547-7398 |
DOI: | 10.1215/S0012-7094-04-12633-8 |