Naïve noncommutative blowing up

Let B(X,,σ) be the twisted homogeneous coordinate ring of an irreducible variety X over an algebraically closed field k with dim X ≥ 2. Assume that c ∈ X and σ ∈ Aut(X) are in sufficiently general position. We show that if one follows the commutative prescription for blowing up X at c, but in this n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2005-02, Vol.126 (3), p.491-546
Hauptverfasser: Keeler, D. S., Rogalski, D., Stafford, J. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let B(X,,σ) be the twisted homogeneous coordinate ring of an irreducible variety X over an algebraically closed field k with dim X ≥ 2. Assume that c ∈ X and σ ∈ Aut(X) are in sufficiently general position. We show that if one follows the commutative prescription for blowing up X at c, but in this noncommutative setting, one obtains a noncommutative ring R = R(X,c,,σ) with surprising properties.
ISSN:0012-7094
1547-7398
DOI:10.1215/S0012-7094-04-12633-8