Integration of twisted Dirac brackets

Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2004-06, Vol.123 (3), p.549-607
Hauptverfasser: Bursztyn, Henrique, Crainic, Marius, Weinstein, Alan, Zhu, Chenchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue 3
container_start_page 549
container_title Duke mathematical journal
container_volume 123
creator Bursztyn, Henrique
Crainic, Marius
Weinstein, Alan
Zhu, Chenchang
description Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps.
doi_str_mv 10.1215/S0012-7094-04-12335-8
format Article
fullrecord <record><control><sourceid>istex_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1086957716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_765_6T6XHMHW_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f005136c26e624f4858ba8e7c0ed52057e8355a4a46b26fd66ab2f015cb19ae73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QdiLx2i-JsnelGptoerBFr2FbDaR7deWJKL-e7tt6WWGGeZ5YR6Erim5pYzC3TshlGFFSoGJwJRxDlifoB4FobDipT5FvePJObpIad6NpWQ9dDNeZ_8VbW7addGGIv80Kfu6eGyidUW1LQuf0yU6C3aZ_NWh99Fs-DQdjPDk7Xk8eJhgJwRkHAgByqVj0ksmgtCgK6u9csTXwAgorzmAFVbIislQS2krFggFV9HSesX76H6fu4nt3Lvsv92yqc0mNisb_0xrGzOYTQ7bQ6tXc0OJliUoReU2AvYRLrYpRR-ONCWm02V2ukznwhBhdrqM3nJ4z3X__x4hGxdGKq7AKAlGTuXn6GX0YV75P-AebDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integration of twisted Dirac brackets</title><source>Project Euclid Complete</source><creator>Bursztyn, Henrique ; Crainic, Marius ; Weinstein, Alan ; Zhu, Chenchang</creator><creatorcontrib>Bursztyn, Henrique ; Crainic, Marius ; Weinstein, Alan ; Zhu, Chenchang</creatorcontrib><description>Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps.</description><identifier>ISSN: 0012-7094</identifier><identifier>EISSN: 1547-7398</identifier><identifier>DOI: 10.1215/S0012-7094-04-12335-8</identifier><language>eng</language><publisher>DUKE University Press</publisher><subject>22E65 ; 53C12 ; 53D17 ; 53D20 ; 57R32 ; 58H05 ; Foliations (differential geometric aspects) [See also 57R30 ; Momentum maps ; Poisson groupoids and algebroids ; Poisson manifolds ; Pseudogroups and differentiable groupoids [See also 22A22 ; symplectic reduction</subject><ispartof>Duke mathematical journal, 2004-06, Vol.123 (3), p.549-607</ispartof><rights>Copyright 2004 Duke University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f005136c26e624f4858ba8e7c0ed52057e8355a4a46b26fd66ab2f015cb19ae73</citedby><cites>FETCH-LOGICAL-c445t-f005136c26e624f4858ba8e7c0ed52057e8355a4a46b26fd66ab2f015cb19ae73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,927,27929,27930</link.rule.ids></links><search><creatorcontrib>Bursztyn, Henrique</creatorcontrib><creatorcontrib>Crainic, Marius</creatorcontrib><creatorcontrib>Weinstein, Alan</creatorcontrib><creatorcontrib>Zhu, Chenchang</creatorcontrib><title>Integration of twisted Dirac brackets</title><title>Duke mathematical journal</title><description>Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps.</description><subject>22E65</subject><subject>53C12</subject><subject>53D17</subject><subject>53D20</subject><subject>57R32</subject><subject>58H05</subject><subject>Foliations (differential geometric aspects) [See also 57R30</subject><subject>Momentum maps</subject><subject>Poisson groupoids and algebroids</subject><subject>Poisson manifolds</subject><subject>Pseudogroups and differentiable groupoids [See also 22A22</subject><subject>symplectic reduction</subject><issn>0012-7094</issn><issn>1547-7398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QdiLx2i-JsnelGptoerBFr2FbDaR7deWJKL-e7tt6WWGGeZ5YR6Erim5pYzC3TshlGFFSoGJwJRxDlifoB4FobDipT5FvePJObpIad6NpWQ9dDNeZ_8VbW7addGGIv80Kfu6eGyidUW1LQuf0yU6C3aZ_NWh99Fs-DQdjPDk7Xk8eJhgJwRkHAgByqVj0ksmgtCgK6u9csTXwAgorzmAFVbIislQS2krFggFV9HSesX76H6fu4nt3Lvsv92yqc0mNisb_0xrGzOYTQ7bQ6tXc0OJliUoReU2AvYRLrYpRR-ONCWm02V2ukznwhBhdrqM3nJ4z3X__x4hGxdGKq7AKAlGTuXn6GX0YV75P-AebDI</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Bursztyn, Henrique</creator><creator>Crainic, Marius</creator><creator>Weinstein, Alan</creator><creator>Zhu, Chenchang</creator><general>DUKE University Press</general><general>Duke University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040615</creationdate><title>Integration of twisted Dirac brackets</title><author>Bursztyn, Henrique ; Crainic, Marius ; Weinstein, Alan ; Zhu, Chenchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f005136c26e624f4858ba8e7c0ed52057e8355a4a46b26fd66ab2f015cb19ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>22E65</topic><topic>53C12</topic><topic>53D17</topic><topic>53D20</topic><topic>57R32</topic><topic>58H05</topic><topic>Foliations (differential geometric aspects) [See also 57R30</topic><topic>Momentum maps</topic><topic>Poisson groupoids and algebroids</topic><topic>Poisson manifolds</topic><topic>Pseudogroups and differentiable groupoids [See also 22A22</topic><topic>symplectic reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bursztyn, Henrique</creatorcontrib><creatorcontrib>Crainic, Marius</creatorcontrib><creatorcontrib>Weinstein, Alan</creatorcontrib><creatorcontrib>Zhu, Chenchang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Duke mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bursztyn, Henrique</au><au>Crainic, Marius</au><au>Weinstein, Alan</au><au>Zhu, Chenchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of twisted Dirac brackets</atitle><jtitle>Duke mathematical journal</jtitle><date>2004-06-15</date><risdate>2004</risdate><volume>123</volume><issue>3</issue><spage>549</spage><epage>607</epage><pages>549-607</pages><issn>0012-7094</issn><eissn>1547-7398</eissn><abstract>Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form ϕ; on M correspond to maps from the Lie algebroid of G into T * M satisfying an algebraic condition and a differential condition with respect to the ϕ-twisted Courant bracket. This correspondence describes, as a special case, the global objects associated to ϕ-twisted Dirac structures. As applications, we relate our results to equivariant cohomology and foliation theory, and we give a new description of quasi-Hamiltonian spaces and group-valued momentum maps.</abstract><pub>DUKE University Press</pub><doi>10.1215/S0012-7094-04-12335-8</doi><tpages>59</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-7094
ispartof Duke mathematical journal, 2004-06, Vol.123 (3), p.549-607
issn 0012-7094
1547-7398
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_dmj_1086957716
source Project Euclid Complete
subjects 22E65
53C12
53D17
53D20
57R32
58H05
Foliations (differential geometric aspects) [See also 57R30
Momentum maps
Poisson groupoids and algebroids
Poisson manifolds
Pseudogroups and differentiable groupoids [See also 22A22
symplectic reduction
title Integration of twisted Dirac brackets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20twisted%20Dirac%20brackets&rft.jtitle=Duke%20mathematical%20journal&rft.au=Bursztyn,%20Henrique&rft.date=2004-06-15&rft.volume=123&rft.issue=3&rft.spage=549&rft.epage=607&rft.pages=549-607&rft.issn=0012-7094&rft.eissn=1547-7398&rft_id=info:doi/10.1215/S0012-7094-04-12335-8&rft_dat=%3Cistex_proje%3Eark_67375_765_6T6XHMHW_N%3C/istex_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true