Nonparametric Inference of Photon Energy Distribution from Indirect Measurement
We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the total amount of charge created by the photon in the detector, which is linearly related to the photon...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2007-05, Vol.13 (2), p.365-388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 13 |
creator | Moulines, E. Roueff, F. Souloumiac, A. Trigano, T. |
description | We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the total amount of charge created by the photon in the detector, which is linearly related to the photon energy. Because the inter-arrival times of photons can be shorter than the charge collection time, pulses corresponding to different photons may overlap leading to a phenomenon known as pile-up. The distortions on the photon energy spectrum estimate due to pile-up become worse when the photon rate increases, making pile-up correction techniques a must for high counting rate experiments. In this paper, we present a novel technique to correct pile-up, which extends a method introduced by Hall and Park for the estimation of the service time from the busy period in M/G/∞ models. It is based on a novel formula linking the joint distribution of the energy and duration of the cluster of pulses and the distribution of the energy of the photons. We then assess the performance of this estimator by providing an expression for its integrated square error. A Monte Carlo experiment is presented to illustrate, with practical examples, the benefits of the pile-up correction. |
doi_str_mv | 10.3150/07-BEJ5184 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1179498753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464882</jstor_id><sourcerecordid>25464882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-176ed6ec38b9986d63cceea87268204590b1a65b98398606973dde1bc7c0b9613</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxD2ARCks7EiZkQJ2_D0hKC0UFcpAZ8txXiBRE1d2OvS_x6hRp5Pu_d7pdAjdEHxPCccPWObP83dOFDtDE0I5zmUh-AW6jLHFmDAh8AStP32_s8F2MITGZcu-hgC9g8zX2devH3yfzXsIP4fspYkJKfdDk7w6-C7BVRPADdkH2LgP0EE_XKHz2m4jXI86RZvF_Hv2lq_Wr8vZ0yp3lPEhJ1JAJcBRVWqtRCWocwBWpYaqwIxrXBIreKkVTWcstKRVBaR00uFSC0Kn6PGYuwu-TR1g77ZNZXah6Ww4GG8bM9usRneUsjWESM20kpymhLtjggs-xgD16Zlg8z-gwdKMAyb49gi3cfDhRBacCaZUQf8AwaRvug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonparametric Inference of Photon Energy Distribution from Indirect Measurement</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Moulines, E. ; Roueff, F. ; Souloumiac, A. ; Trigano, T.</creator><creatorcontrib>Moulines, E. ; Roueff, F. ; Souloumiac, A. ; Trigano, T.</creatorcontrib><description>We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the total amount of charge created by the photon in the detector, which is linearly related to the photon energy. Because the inter-arrival times of photons can be shorter than the charge collection time, pulses corresponding to different photons may overlap leading to a phenomenon known as pile-up. The distortions on the photon energy spectrum estimate due to pile-up become worse when the photon rate increases, making pile-up correction techniques a must for high counting rate experiments. In this paper, we present a novel technique to correct pile-up, which extends a method introduced by Hall and Park for the estimation of the service time from the busy period in M/G/∞ models. It is based on a novel formula linking the joint distribution of the energy and duration of the cluster of pulses and the distribution of the energy of the photons. We then assess the performance of this estimator by providing an expression for its integrated square error. A Monte Carlo experiment is presented to illustrate, with practical examples, the benefits of the pile-up correction.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/07-BEJ5184</identifier><language>eng</language><publisher>International Statistics Institute / Bernoulli Society</publisher><subject>Density estimation ; Estimators ; Indirect measurement ; indirect observations ; Inference ; Laplace transformation ; marked Poisson processes ; Mathematical sequences ; nonlinear inverse problems ; nonparametric density estimation ; Photons ; Poisson process ; Semiconductors ; Workloads</subject><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-05, Vol.13 (2), p.365-388</ispartof><rights>Copyright 2007 International Statistical Institute/Bernoulli Society</rights><rights>Copyright 2007 Bernoulli Society for Mathematical Statistics and Probability</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-176ed6ec38b9986d63cceea87268204590b1a65b98398606973dde1bc7c0b9613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464882$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464882$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Moulines, E.</creatorcontrib><creatorcontrib>Roueff, F.</creatorcontrib><creatorcontrib>Souloumiac, A.</creatorcontrib><creatorcontrib>Trigano, T.</creatorcontrib><title>Nonparametric Inference of Photon Energy Distribution from Indirect Measurement</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the total amount of charge created by the photon in the detector, which is linearly related to the photon energy. Because the inter-arrival times of photons can be shorter than the charge collection time, pulses corresponding to different photons may overlap leading to a phenomenon known as pile-up. The distortions on the photon energy spectrum estimate due to pile-up become worse when the photon rate increases, making pile-up correction techniques a must for high counting rate experiments. In this paper, we present a novel technique to correct pile-up, which extends a method introduced by Hall and Park for the estimation of the service time from the busy period in M/G/∞ models. It is based on a novel formula linking the joint distribution of the energy and duration of the cluster of pulses and the distribution of the energy of the photons. We then assess the performance of this estimator by providing an expression for its integrated square error. A Monte Carlo experiment is presented to illustrate, with practical examples, the benefits of the pile-up correction.</description><subject>Density estimation</subject><subject>Estimators</subject><subject>Indirect measurement</subject><subject>indirect observations</subject><subject>Inference</subject><subject>Laplace transformation</subject><subject>marked Poisson processes</subject><subject>Mathematical sequences</subject><subject>nonlinear inverse problems</subject><subject>nonparametric density estimation</subject><subject>Photons</subject><subject>Poisson process</subject><subject>Semiconductors</subject><subject>Workloads</subject><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxD2ARCks7EiZkQJ2_D0hKC0UFcpAZ8txXiBRE1d2OvS_x6hRp5Pu_d7pdAjdEHxPCccPWObP83dOFDtDE0I5zmUh-AW6jLHFmDAh8AStP32_s8F2MITGZcu-hgC9g8zX2devH3yfzXsIP4fspYkJKfdDk7w6-C7BVRPADdkH2LgP0EE_XKHz2m4jXI86RZvF_Hv2lq_Wr8vZ0yp3lPEhJ1JAJcBRVWqtRCWocwBWpYaqwIxrXBIreKkVTWcstKRVBaR00uFSC0Kn6PGYuwu-TR1g77ZNZXah6Ww4GG8bM9usRneUsjWESM20kpymhLtjggs-xgD16Zlg8z-gwdKMAyb49gi3cfDhRBacCaZUQf8AwaRvug</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Moulines, E.</creator><creator>Roueff, F.</creator><creator>Souloumiac, A.</creator><creator>Trigano, T.</creator><general>International Statistics Institute / Bernoulli Society</general><general>Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070501</creationdate><title>Nonparametric Inference of Photon Energy Distribution from Indirect Measurement</title><author>Moulines, E. ; Roueff, F. ; Souloumiac, A. ; Trigano, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-176ed6ec38b9986d63cceea87268204590b1a65b98398606973dde1bc7c0b9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Density estimation</topic><topic>Estimators</topic><topic>Indirect measurement</topic><topic>indirect observations</topic><topic>Inference</topic><topic>Laplace transformation</topic><topic>marked Poisson processes</topic><topic>Mathematical sequences</topic><topic>nonlinear inverse problems</topic><topic>nonparametric density estimation</topic><topic>Photons</topic><topic>Poisson process</topic><topic>Semiconductors</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moulines, E.</creatorcontrib><creatorcontrib>Roueff, F.</creatorcontrib><creatorcontrib>Souloumiac, A.</creatorcontrib><creatorcontrib>Trigano, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moulines, E.</au><au>Roueff, F.</au><au>Souloumiac, A.</au><au>Trigano, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Inference of Photon Energy Distribution from Indirect Measurement</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>13</volume><issue>2</issue><spage>365</spage><epage>388</epage><pages>365-388</pages><issn>1350-7265</issn><abstract>We consider a density estimation problem arising in nuclear physics. Gamma photons are impinging on a semiconductor detector, producing pulses of current. The integral of this pulse is equal to the total amount of charge created by the photon in the detector, which is linearly related to the photon energy. Because the inter-arrival times of photons can be shorter than the charge collection time, pulses corresponding to different photons may overlap leading to a phenomenon known as pile-up. The distortions on the photon energy spectrum estimate due to pile-up become worse when the photon rate increases, making pile-up correction techniques a must for high counting rate experiments. In this paper, we present a novel technique to correct pile-up, which extends a method introduced by Hall and Park for the estimation of the service time from the busy period in M/G/∞ models. It is based on a novel formula linking the joint distribution of the energy and duration of the cluster of pulses and the distribution of the energy of the photons. We then assess the performance of this estimator by providing an expression for its integrated square error. A Monte Carlo experiment is presented to illustrate, with practical examples, the benefits of the pile-up correction.</abstract><pub>International Statistics Institute / Bernoulli Society</pub><doi>10.3150/07-BEJ5184</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2007-05, Vol.13 (2), p.365-388 |
issn | 1350-7265 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_bj_1179498753 |
source | Jstor Complete Legacy; JSTOR Mathematics and Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Density estimation Estimators Indirect measurement indirect observations Inference Laplace transformation marked Poisson processes Mathematical sequences nonlinear inverse problems nonparametric density estimation Photons Poisson process Semiconductors Workloads |
title | Nonparametric Inference of Photon Energy Distribution from Indirect Measurement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Inference%20of%20Photon%20Energy%20Distribution%20from%20Indirect%20Measurement&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=Moulines,%20E.&rft.date=2007-05-01&rft.volume=13&rft.issue=2&rft.spage=365&rft.epage=388&rft.pages=365-388&rft.issn=1350-7265&rft_id=info:doi/10.3150/07-BEJ5184&rft_dat=%3Cjstor_proje%3E25464882%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=25464882&rfr_iscdi=true |