Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even

In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2006-01, Vol.12 (5), p.651-655
Hauptverfasser: Aguglia, A., Korchmáros, G., Siciliano, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 5
container_start_page 651
container_title Bulletin of the Belgian Mathematical Society, Simon Stevin
container_volume 12
creator Aguglia, A.
Korchmáros, G.
Siciliano, A.
description In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].
doi_str_mv 10.36045/bbms/1136902603
format Article
fullrecord <record><control><sourceid>crossref_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_bbms_1136902603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_36045_bbms_1136902603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-2f30b934582323be4a5fb998d4e49c1b291d8c7c8e2f8224a2b7e3d5b04333553</originalsourceid><addsrcrecordid>eNplkL1PwzAQxS0EEqWwM3rIAFJDzz7nwxtVBAUpCAY6R7HjgKs0ae22Ev89oY1gYHp6d_eeTj9CrhncYQwimiq18lPGMJbAY8ATMuKAImQygVMyYphAyIQQ5-TC-yUA7w-TEbl_sa1dlQ3V3d44237QrqZl0_vPzlX-4PpdazW1LQ3e5jd8srkNJjTYBNTsTXtJzuqy8eZq0DFZPD68Z09h_jp_zmZ5qFHgNuQ1gpIoopQjR2VEGdVKyrQSRkjNFJesSnWiU8PrlHNRcpUYrCIFAhGjCMdkduxdu25p9NbsdGOrYu36791X0ZW2yBb5MB3kB0nxh6TvgGOHdp33ztS_cQbFgeK_yDcYL2MD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Aguglia, A. ; Korchmáros, G. ; Siciliano, A.</creator><creatorcontrib>Aguglia, A. ; Korchmáros, G. ; Siciliano, A.</creatorcontrib><description>In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].</description><identifier>ISSN: 1370-1444</identifier><identifier>EISSN: 2034-1970</identifier><identifier>DOI: 10.36045/bbms/1136902603</identifier><language>eng</language><publisher>The Belgian Mathematical Society</publisher><ispartof>Bulletin of the Belgian Mathematical Society, Simon Stevin, 2006-01, Vol.12 (5), p.651-655</ispartof><rights>Copyright 2006 The Belgian Mathematic Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-2f30b934582323be4a5fb998d4e49c1b291d8c7c8e2f8224a2b7e3d5b04333553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,921,27901,27902</link.rule.ids></links><search><creatorcontrib>Aguglia, A.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><creatorcontrib>Siciliano, A.</creatorcontrib><title>Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even</title><title>Bulletin of the Belgian Mathematical Society, Simon Stevin</title><description>In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].</description><issn>1370-1444</issn><issn>2034-1970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkL1PwzAQxS0EEqWwM3rIAFJDzz7nwxtVBAUpCAY6R7HjgKs0ae22Ev89oY1gYHp6d_eeTj9CrhncYQwimiq18lPGMJbAY8ATMuKAImQygVMyYphAyIQQ5-TC-yUA7w-TEbl_sa1dlQ3V3d44237QrqZl0_vPzlX-4PpdazW1LQ3e5jd8srkNJjTYBNTsTXtJzuqy8eZq0DFZPD68Z09h_jp_zmZ5qFHgNuQ1gpIoopQjR2VEGdVKyrQSRkjNFJesSnWiU8PrlHNRcpUYrCIFAhGjCMdkduxdu25p9NbsdGOrYu36791X0ZW2yBb5MB3kB0nxh6TvgGOHdp33ztS_cQbFgeK_yDcYL2MD</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Aguglia, A.</creator><creator>Korchmáros, G.</creator><creator>Siciliano, A.</creator><general>The Belgian Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060101</creationdate><title>Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even</title><author>Aguglia, A. ; Korchmáros, G. ; Siciliano, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-2f30b934582323be4a5fb998d4e49c1b291d8c7c8e2f8224a2b7e3d5b04333553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Aguglia, A.</creatorcontrib><creatorcontrib>Korchmáros, G.</creatorcontrib><creatorcontrib>Siciliano, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Belgian Mathematical Society, Simon Stevin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguglia, A.</au><au>Korchmáros, G.</au><au>Siciliano, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even</atitle><jtitle>Bulletin of the Belgian Mathematical Society, Simon Stevin</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>12</volume><issue>5</issue><spage>651</spage><epage>655</epage><pages>651-655</pages><issn>1370-1444</issn><eissn>2034-1970</eissn><abstract>In this paper we determine the minimal blocking sets of chords of an irreducible conic \mathcal C in the desarguesian projective plane PG(2,q), q even. Similar results on blocking sets of external lines, as well as of nonsecant lines, are given in [1], [3], and [2].</abstract><pub>The Belgian Mathematical Society</pub><doi>10.36045/bbms/1136902603</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1370-1444
ispartof Bulletin of the Belgian Mathematical Society, Simon Stevin, 2006-01, Vol.12 (5), p.651-655
issn 1370-1444
2034-1970
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_bbms_1136902603
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
title Minimal covering of all chords of a conic in $PG(2,q)$, $q$ even
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20covering%20of%20all%20chords%20of%20a%20conic%20in%20$PG(2,q)$,%20$q$%20even&rft.jtitle=Bulletin%20of%20the%20Belgian%20Mathematical%20Society,%20Simon%20Stevin&rft.au=Aguglia,%20A.&rft.date=2006-01-01&rft.volume=12&rft.issue=5&rft.spage=651&rft.epage=655&rft.pages=651-655&rft.issn=1370-1444&rft.eissn=2034-1970&rft_id=info:doi/10.36045/bbms/1136902603&rft_dat=%3Ccrossref_proje%3E10_36045_bbms_1136902603%3C/crossref_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true