Multiscale Testing of Qualitative Hypotheses

Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2001-02, Vol.29 (1), p.124-152
Hauptverfasser: Dumbgen, Lutz, Spokoiny, Vladimir G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 124
container_title The Annals of statistics
container_volume 29
creator Dumbgen, Lutz
Spokoiny, Vladimir G.
description Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.
doi_str_mv 10.1214/aos/996986504
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_996986504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2674020</jstor_id><sourcerecordid>2674020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7651835494b6cd6329475487c532d9ef08cf610bbfe312db073cd580ad4b4893</originalsourceid><addsrcrecordid>eNplUE1LAzEUDKJgrR69ediDR9e-fG5yEinVChUR6nnJZhNNWZuSpEL_vVu6FMHTwLyZecwgdI3hHhPMJjqkiVJCScGBnaARwUKWUglxikYACkpOBTtHFymtAIArRkfo7nXbZZ-M7myxtCn79WcRXPG-1Z3POvsfW8x3m5C_bLLpEp053SV7NeAYLZ9my-m8XLw9v0wfF6WhEnJZCY4l5UyxRphWUKJYxZmsDKekVdaBNE5gaBpnKSZtAxU1LZegW9YwqegYPRxiNzGsrMl2azrf1pvov3Xc1UH7evqxGNgB-u71sXufUB4STAwpReuOZgz1fqt_-tvho95P4aJeG5_-mJToG_Sym4NslXKIxzMRFQMC9BfAhXLP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiscale Testing of Qualitative Hypotheses</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Dumbgen, Lutz ; Spokoiny, Vladimir G.</creator><creatorcontrib>Dumbgen, Lutz ; Spokoiny, Vladimir G.</creatorcontrib><description>Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/996986504</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G10 ; 62G20 ; adaptivity ; concavity ; Estimators ; Exact sciences and technology ; Gaussian distributions ; Linear regression ; Lévy's modulus of continuity ; Mathematical independent variables ; Mathematics ; monotonicity ; multiple test ; Musical intervals ; nonparametric ; Nonparametric inference ; Nonparametric Testing ; Null hypothesis ; positivity ; Probability and statistics ; Random variables ; Sciences and techniques of general use ; Signal bandwidth ; Statistical theories ; Statistics ; White noise</subject><ispartof>The Annals of statistics, 2001-02, Vol.29 (1), p.124-152</ispartof><rights>Copyright 2001 Institute of Mathematical Statistics</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7651835494b6cd6329475487c532d9ef08cf610bbfe312db073cd580ad4b4893</citedby><cites>FETCH-LOGICAL-c380t-7651835494b6cd6329475487c532d9ef08cf610bbfe312db073cd580ad4b4893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2674020$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2674020$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1096754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dumbgen, Lutz</creatorcontrib><creatorcontrib>Spokoiny, Vladimir G.</creatorcontrib><title>Multiscale Testing of Qualitative Hypotheses</title><title>The Annals of statistics</title><description>Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.</description><subject>62G10</subject><subject>62G20</subject><subject>adaptivity</subject><subject>concavity</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Gaussian distributions</subject><subject>Linear regression</subject><subject>Lévy's modulus of continuity</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>monotonicity</subject><subject>multiple test</subject><subject>Musical intervals</subject><subject>nonparametric</subject><subject>Nonparametric inference</subject><subject>Nonparametric Testing</subject><subject>Null hypothesis</subject><subject>positivity</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Signal bandwidth</subject><subject>Statistical theories</subject><subject>Statistics</subject><subject>White noise</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplUE1LAzEUDKJgrR69ediDR9e-fG5yEinVChUR6nnJZhNNWZuSpEL_vVu6FMHTwLyZecwgdI3hHhPMJjqkiVJCScGBnaARwUKWUglxikYACkpOBTtHFymtAIArRkfo7nXbZZ-M7myxtCn79WcRXPG-1Z3POvsfW8x3m5C_bLLpEp053SV7NeAYLZ9my-m8XLw9v0wfF6WhEnJZCY4l5UyxRphWUKJYxZmsDKekVdaBNE5gaBpnKSZtAxU1LZegW9YwqegYPRxiNzGsrMl2azrf1pvov3Xc1UH7evqxGNgB-u71sXufUB4STAwpReuOZgz1fqt_-tvho95P4aJeG5_-mJToG_Sym4NslXKIxzMRFQMC9BfAhXLP</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Dumbgen, Lutz</creator><creator>Spokoiny, Vladimir G.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010201</creationdate><title>Multiscale Testing of Qualitative Hypotheses</title><author>Dumbgen, Lutz ; Spokoiny, Vladimir G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7651835494b6cd6329475487c532d9ef08cf610bbfe312db073cd580ad4b4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>62G10</topic><topic>62G20</topic><topic>adaptivity</topic><topic>concavity</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Gaussian distributions</topic><topic>Linear regression</topic><topic>Lévy's modulus of continuity</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>monotonicity</topic><topic>multiple test</topic><topic>Musical intervals</topic><topic>nonparametric</topic><topic>Nonparametric inference</topic><topic>Nonparametric Testing</topic><topic>Null hypothesis</topic><topic>positivity</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Signal bandwidth</topic><topic>Statistical theories</topic><topic>Statistics</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumbgen, Lutz</creatorcontrib><creatorcontrib>Spokoiny, Vladimir G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumbgen, Lutz</au><au>Spokoiny, Vladimir G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Testing of Qualitative Hypotheses</atitle><jtitle>The Annals of statistics</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>29</volume><issue>1</issue><spage>124</spage><epage>152</epage><pages>124-152</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Suppose that one observes a process Y on the unit interval, where dY(t) = n1/2f(t) dt + dW(t) with an unknown function parameter f, given scale parameter n ≥ 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/996986504</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2001-02, Vol.29 (1), p.124-152
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_996986504
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 62G10
62G20
adaptivity
concavity
Estimators
Exact sciences and technology
Gaussian distributions
Linear regression
Lévy's modulus of continuity
Mathematical independent variables
Mathematics
monotonicity
multiple test
Musical intervals
nonparametric
Nonparametric inference
Nonparametric Testing
Null hypothesis
positivity
Probability and statistics
Random variables
Sciences and techniques of general use
Signal bandwidth
Statistical theories
Statistics
White noise
title Multiscale Testing of Qualitative Hypotheses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Testing%20of%20Qualitative%20Hypotheses&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Dumbgen,%20Lutz&rft.date=2001-02-01&rft.volume=29&rft.issue=1&rft.spage=124&rft.epage=152&rft.pages=124-152&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/996986504&rft_dat=%3Cjstor_proje%3E2674020%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2674020&rfr_iscdi=true