THE FUSED KOLMOGOROV FILTER: A NONPARAMETRIC MODEL-FREE SCREENING METHOD

A new model-free screening method called the fused Kolmogorov filter is proposed for high-dimensional data analysis. This new method is fully nonparametric and can work with many types of covariates and response variables, including continuous, discrete and categorical variables. We apply the fused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2015-08, Vol.43 (4), p.1471-1497
Hauptverfasser: Mai, Qing, Zou, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new model-free screening method called the fused Kolmogorov filter is proposed for high-dimensional data analysis. This new method is fully nonparametric and can work with many types of covariates and response variables, including continuous, discrete and categorical variables. We apply the fused Kolmogorov filter to deal with variable screening problems emerging from a wide range of applications, such as multiclass classification, nonparametric regression and Poisson regression, among others. It is shown that the fused Kolmogorov filter enjoys the sure screening property under weak regularity conditions that are much milder than those required for many existing nonparametric screening methods. In particular, the fused Kolmogorov filter can still be powerful when covariates are strongly dependent on each other. We further demonstrate the superior performance of the fused Kolmogorov filter over existing screening methods by simulations and real data examples.
ISSN:0090-5364
2168-8966
DOI:10.1214/14-AOS1303