THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS

We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gauss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2014-10, Vol.42 (5), p.1850-1878
Hauptverfasser: Bochkina, Natalia A., Green, Peter J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 5
container_start_page 1850
container_title The Annals of statistics
container_volume 42
creator Bochkina, Natalia A.
Green, Peter J.
description We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gaussian components as in the case of regular models (the Bernstein-von Mises theorem) but also has Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary and have a faster rate of convergence. We also demonstrate a remarkable property of Bayesian inference, that for some models, there appears to be no bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. We illustrate the results on a problem from emission tomography.
doi_str_mv 10.1214/14-AOS1239
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1410440627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43556346</jstor_id><sourcerecordid>43556346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-6dc5ea4d0fb77363b7e9ef500fd3334717d05cd5d6845ca3dffe3e835d59bf9e3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFYv3oWANyG6m9mP5GZs17aQJpC0Xpc0uwsN1ehuevDfG2noZV4YHp4ZXoTuCX4mEaEvhIZpUZEIkgs0iQiPwzjh_BJNME5wyIDTa3TjfYsxZgmFCWKbpQzeZJlXG7nKw48iD9arSlbBsC9KuQ7SfB7kRV7KxTZLy2BdzGVW3aIrWx-8uRtzirbvcjNbhlmxWM3SLGwoYX3IdcNMTTW2OyGAw06YxFiGsdUAQAURGrNGM81jypoatLUGTAxMs2RnEwNT9HryfruuNU1vjs1hr9W323_W7ld19V7Nttm4HaPuvCKUYEoxj8SgeDwrfo7G96rtju5r-FoREQs8VDKMKXo6UY3rvHfGnm8QrP6bHZRqbHaAH05w6_vOnUkKjHGgHP4AgNZvfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787036470</pqid></control><display><type>article</type><title>THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bochkina, Natalia A. ; Green, Peter J.</creator><creatorcontrib>Bochkina, Natalia A. ; Green, Peter J.</creatorcontrib><description>We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gaussian components as in the case of regular models (the Bernstein-von Mises theorem) but also has Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary and have a faster rate of convergence. We also demonstrate a remarkable property of Bayesian inference, that for some models, there appears to be no bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. We illustrate the results on a problem from emission tomography.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/14-AOS1239</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62F12 ; 62F15 ; Approximate posterior ; Approximation ; Asymptotic methods ; Bayesian analysis ; Bayesian inference ; Bernstein–von Mises theorem ; boundary ; Coordinate systems ; Inference ; Linear models ; Mathematical independent variables ; Mathematical models ; Matrices ; nonregular ; Parametric models ; Photons ; Pixels ; posterior concentration ; Probability distribution ; SPECT ; Statistical inference ; Studies ; Tomography ; total variation distance ; variance estimation in mixed models</subject><ispartof>The Annals of statistics, 2014-10, Vol.42 (5), p.1850-1878</ispartof><rights>Copyright © 2014 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Oct 2014</rights><rights>Copyright 2014 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-6dc5ea4d0fb77363b7e9ef500fd3334717d05cd5d6845ca3dffe3e835d59bf9e3</citedby><cites>FETCH-LOGICAL-c415t-6dc5ea4d0fb77363b7e9ef500fd3334717d05cd5d6845ca3dffe3e835d59bf9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43556346$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43556346$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bochkina, Natalia A.</creatorcontrib><creatorcontrib>Green, Peter J.</creatorcontrib><title>THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS</title><title>The Annals of statistics</title><description>We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gaussian components as in the case of regular models (the Bernstein-von Mises theorem) but also has Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary and have a faster rate of convergence. We also demonstrate a remarkable property of Bayesian inference, that for some models, there appears to be no bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. We illustrate the results on a problem from emission tomography.</description><subject>62F12</subject><subject>62F15</subject><subject>Approximate posterior</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bernstein–von Mises theorem</subject><subject>boundary</subject><subject>Coordinate systems</subject><subject>Inference</subject><subject>Linear models</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>nonregular</subject><subject>Parametric models</subject><subject>Photons</subject><subject>Pixels</subject><subject>posterior concentration</subject><subject>Probability distribution</subject><subject>SPECT</subject><subject>Statistical inference</subject><subject>Studies</subject><subject>Tomography</subject><subject>total variation distance</subject><subject>variance estimation in mixed models</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFYv3oWANyG6m9mP5GZs17aQJpC0Xpc0uwsN1ehuevDfG2noZV4YHp4ZXoTuCX4mEaEvhIZpUZEIkgs0iQiPwzjh_BJNME5wyIDTa3TjfYsxZgmFCWKbpQzeZJlXG7nKw48iD9arSlbBsC9KuQ7SfB7kRV7KxTZLy2BdzGVW3aIrWx-8uRtzirbvcjNbhlmxWM3SLGwoYX3IdcNMTTW2OyGAw06YxFiGsdUAQAURGrNGM81jypoatLUGTAxMs2RnEwNT9HryfruuNU1vjs1hr9W323_W7ld19V7Nttm4HaPuvCKUYEoxj8SgeDwrfo7G96rtju5r-FoREQs8VDKMKXo6UY3rvHfGnm8QrP6bHZRqbHaAH05w6_vOnUkKjHGgHP4AgNZvfw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Bochkina, Natalia A.</creator><creator>Green, Peter J.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20141001</creationdate><title>THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS</title><author>Bochkina, Natalia A. ; Green, Peter J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-6dc5ea4d0fb77363b7e9ef500fd3334717d05cd5d6845ca3dffe3e835d59bf9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>62F12</topic><topic>62F15</topic><topic>Approximate posterior</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bernstein–von Mises theorem</topic><topic>boundary</topic><topic>Coordinate systems</topic><topic>Inference</topic><topic>Linear models</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>nonregular</topic><topic>Parametric models</topic><topic>Photons</topic><topic>Pixels</topic><topic>posterior concentration</topic><topic>Probability distribution</topic><topic>SPECT</topic><topic>Statistical inference</topic><topic>Studies</topic><topic>Tomography</topic><topic>total variation distance</topic><topic>variance estimation in mixed models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bochkina, Natalia A.</creatorcontrib><creatorcontrib>Green, Peter J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bochkina, Natalia A.</au><au>Green, Peter J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS</atitle><jtitle>The Annals of statistics</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>42</volume><issue>5</issue><spage>1850</spage><epage>1878</epage><pages>1850-1878</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We study the asymptotic behaviour of the posterior distribution in a broad class of statistical models where the "true" solution occurs on the boundary of the parameter space. We show that in this case Bayesian inference is consistent, and that the posterior distribution has not only Gaussian components as in the case of regular models (the Bernstein-von Mises theorem) but also has Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary and have a faster rate of convergence. We also demonstrate a remarkable property of Bayesian inference, that for some models, there appears to be no bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. We illustrate the results on a problem from emission tomography.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/14-AOS1239</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2014-10, Vol.42 (5), p.1850-1878
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1410440627
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 62F12
62F15
Approximate posterior
Approximation
Asymptotic methods
Bayesian analysis
Bayesian inference
Bernstein–von Mises theorem
boundary
Coordinate systems
Inference
Linear models
Mathematical independent variables
Mathematical models
Matrices
nonregular
Parametric models
Photons
Pixels
posterior concentration
Probability distribution
SPECT
Statistical inference
Studies
Tomography
total variation distance
variance estimation in mixed models
title THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20BERNSTEIN-VON%20MISES%20THEOREM%20AND%20NONREGULAR%20MODELS&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Bochkina,%20Natalia%20A.&rft.date=2014-10-01&rft.volume=42&rft.issue=5&rft.spage=1850&rft.epage=1878&rft.pages=1850-1878&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/14-AOS1239&rft_dat=%3Cjstor_proje%3E43556346%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787036470&rft_id=info:pmid/&rft_jstor_id=43556346&rfr_iscdi=true