BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS
We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feat...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2014-04, Vol.42 (2), p.789-817 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 2 |
container_start_page | 789 |
container_title | The Annals of statistics |
container_volume | 42 |
creator | Narisetty, Naveen Naidu He, Xuming |
description | We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feature, that is, the prior variances depend on the sample size through which appropriate shrinkage can be achieved. We show the strong selection consistency of the proposed method in the sense that the posterior probability of the true model converges to one even when the number of covariates grows nearly exponentially with the sample size. This is arguably the strongest selection consistency result that has been available in the Bayesian variable selection literature; yet the proposed method can be carried out through posterior sampling with a simple Gibbs sampler. Furthermore, we argue that the proposed method is asymptotically similar to model selection with the L₀ penalty. We also demonstrate through empirical work the fine performance of the proposed approach relative to some state of the art alternatives. |
doi_str_mv | 10.1214/14-AOS1207 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1400592178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43556304</jstor_id><sourcerecordid>43556304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c605bde6b082a3d895364c7e388d3973a335ea8a66fb333c6d10ca77fd43f20b3</originalsourceid><addsrcrecordid>eNo9kEFPg0AQhTdGE2v14t2ExJsJusvsLnBSSmm7kYCBVuNpsyxLUqJSgR7890La9DSZmS9v3jyEbgl-JA6hT4TaQZoTB7tnaOIQ7tmez_k5mmDsY5sBp5foqutqjDHzKUzQ8yz4jHIRJNZ7kIlgFkdWHsVRuBZpYn2I9crKV5lIXkWytIJkbs3FYrHJx-4tE2mWX6OLSn115uZYp2iziNbhyo7TpQiD2NaUsN7WHLOiNLzAnqOg9PzRinYNeF4JvgsKgBnlKc6rAgA0LwnWynWrkkLl4AKm6OWgu2ub2uje7PXXtpS7dvut2j_ZqK0MN_Fxeiyq6SSh46cOcb1B4v4k8bs3XS_rZt_-DK7lsHYxcGAj9XCgdNt0XWuq0w2C5ZjxICmPGQ_w3QGuu75pTyQFxjhgCv_wLHFu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787036358</pqid></control><display><type>article</type><title>BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Narisetty, Naveen Naidu ; He, Xuming</creator><creatorcontrib>Narisetty, Naveen Naidu ; He, Xuming</creatorcontrib><description>We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feature, that is, the prior variances depend on the sample size through which appropriate shrinkage can be achieved. We show the strong selection consistency of the proposed method in the sense that the posterior probability of the true model converges to one even when the number of covariates grows nearly exponentially with the sample size. This is arguably the strongest selection consistency result that has been available in the Bayesian variable selection literature; yet the proposed method can be carried out through posterior sampling with a simple Gibbs sampler. Furthermore, we argue that the proposed method is asymptotically similar to model selection with the L₀ penalty. We also demonstrate through empirical work the fine performance of the proposed approach relative to some state of the art alternatives.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/14-AOS1207</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62F12 ; 62F15 ; 62J05 ; Bayes factor ; Bayesian analysis ; Eigenvalues ; Gaussian distributions ; hierarchical model ; high dimensional data ; Linear regression ; Mathematical models ; Mathematical vectors ; Matrices ; Modeling ; Normal distribution ; Oracles ; Parametric models ; Probabilities ; Probability ; Sample size ; shrinkage ; Studies ; variable selection</subject><ispartof>The Annals of statistics, 2014-04, Vol.42 (2), p.789-817</ispartof><rights>Copyright © 2014 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Apr 2014</rights><rights>Copyright 2014 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c605bde6b082a3d895364c7e388d3973a335ea8a66fb333c6d10ca77fd43f20b3</citedby><cites>FETCH-LOGICAL-c415t-c605bde6b082a3d895364c7e388d3973a335ea8a66fb333c6d10ca77fd43f20b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43556304$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43556304$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Narisetty, Naveen Naidu</creatorcontrib><creatorcontrib>He, Xuming</creatorcontrib><title>BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS</title><title>The Annals of statistics</title><description>We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feature, that is, the prior variances depend on the sample size through which appropriate shrinkage can be achieved. We show the strong selection consistency of the proposed method in the sense that the posterior probability of the true model converges to one even when the number of covariates grows nearly exponentially with the sample size. This is arguably the strongest selection consistency result that has been available in the Bayesian variable selection literature; yet the proposed method can be carried out through posterior sampling with a simple Gibbs sampler. Furthermore, we argue that the proposed method is asymptotically similar to model selection with the L₀ penalty. We also demonstrate through empirical work the fine performance of the proposed approach relative to some state of the art alternatives.</description><subject>62F12</subject><subject>62F15</subject><subject>62J05</subject><subject>Bayes factor</subject><subject>Bayesian analysis</subject><subject>Eigenvalues</subject><subject>Gaussian distributions</subject><subject>hierarchical model</subject><subject>high dimensional data</subject><subject>Linear regression</subject><subject>Mathematical models</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Modeling</subject><subject>Normal distribution</subject><subject>Oracles</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Sample size</subject><subject>shrinkage</subject><subject>Studies</subject><subject>variable selection</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPg0AQhTdGE2v14t2ExJsJusvsLnBSSmm7kYCBVuNpsyxLUqJSgR7890La9DSZmS9v3jyEbgl-JA6hT4TaQZoTB7tnaOIQ7tmez_k5mmDsY5sBp5foqutqjDHzKUzQ8yz4jHIRJNZ7kIlgFkdWHsVRuBZpYn2I9crKV5lIXkWytIJkbs3FYrHJx-4tE2mWX6OLSn115uZYp2iziNbhyo7TpQiD2NaUsN7WHLOiNLzAnqOg9PzRinYNeF4JvgsKgBnlKc6rAgA0LwnWynWrkkLl4AKm6OWgu2ub2uje7PXXtpS7dvut2j_ZqK0MN_Fxeiyq6SSh46cOcb1B4v4k8bs3XS_rZt_-DK7lsHYxcGAj9XCgdNt0XWuq0w2C5ZjxICmPGQ_w3QGuu75pTyQFxjhgCv_wLHFu</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Narisetty, Naveen Naidu</creator><creator>He, Xuming</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20140401</creationdate><title>BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS</title><author>Narisetty, Naveen Naidu ; He, Xuming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c605bde6b082a3d895364c7e388d3973a335ea8a66fb333c6d10ca77fd43f20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>62F12</topic><topic>62F15</topic><topic>62J05</topic><topic>Bayes factor</topic><topic>Bayesian analysis</topic><topic>Eigenvalues</topic><topic>Gaussian distributions</topic><topic>hierarchical model</topic><topic>high dimensional data</topic><topic>Linear regression</topic><topic>Mathematical models</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Modeling</topic><topic>Normal distribution</topic><topic>Oracles</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Sample size</topic><topic>shrinkage</topic><topic>Studies</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narisetty, Naveen Naidu</creatorcontrib><creatorcontrib>He, Xuming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narisetty, Naveen Naidu</au><au>He, Xuming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS</atitle><jtitle>The Annals of statistics</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>42</volume><issue>2</issue><spage>789</spage><epage>817</epage><pages>789-817</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We consider a Bayesian approach to variable selection in the presence of high dimensional covariates based on a hierarchical model that places prior distributions on the regression coefficients as well as on the model space. We adopt the well-known spike and slab Gaussian priors with a distinct feature, that is, the prior variances depend on the sample size through which appropriate shrinkage can be achieved. We show the strong selection consistency of the proposed method in the sense that the posterior probability of the true model converges to one even when the number of covariates grows nearly exponentially with the sample size. This is arguably the strongest selection consistency result that has been available in the Bayesian variable selection literature; yet the proposed method can be carried out through posterior sampling with a simple Gibbs sampler. Furthermore, we argue that the proposed method is asymptotically similar to model selection with the L₀ penalty. We also demonstrate through empirical work the fine performance of the proposed approach relative to some state of the art alternatives.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/14-AOS1207</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2014-04, Vol.42 (2), p.789-817 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1400592178 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 62F12 62F15 62J05 Bayes factor Bayesian analysis Eigenvalues Gaussian distributions hierarchical model high dimensional data Linear regression Mathematical models Mathematical vectors Matrices Modeling Normal distribution Oracles Parametric models Probabilities Probability Sample size shrinkage Studies variable selection |
title | BAYESIAN VARIABLE SELECTION WITH SHRINKING AND DIFFUSING PRIORS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BAYESIAN%20VARIABLE%20SELECTION%20WITH%20SHRINKING%20AND%20DIFFUSING%20PRIORS&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Narisetty,%20Naveen%20Naidu&rft.date=2014-04-01&rft.volume=42&rft.issue=2&rft.spage=789&rft.epage=817&rft.pages=789-817&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/14-AOS1207&rft_dat=%3Cjstor_proje%3E43556304%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787036358&rft_id=info:pmid/&rft_jstor_id=43556304&rfr_iscdi=true |