A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS

This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2012-04, Vol.40 (2), p.666-693
Hauptverfasser: Bercu, Bernard, Fraysse, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 693
container_issue 2
container_start_page 666
container_title The Annals of statistics
container_volume 40
creator Bercu, Bernard
Fraysse, Philippe
description This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar to that of Robbins-Monro in order to estimate the shift parameter. A preliminary evaluation of the regression function is not necessary to estimate the shift parameter. On the other hand, we make use of a recursive Nadaraya-Watson estimator for the estimation of the regression function. This kernel estimator takes into account the previous estimation of the shift parameter. We establish the almost sure convergence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic normality of our estimates is also provided. Finally, we illustrate our semiparametric estimation procedure on simulated and real data.
doi_str_mv 10.1214/12-AOS969
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1337268208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41713651</jstor_id><sourcerecordid>41713651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5e650265e84a65e1f4d868e8d4ced1aedcd12f2b38cb016edd45a71aaa046e563</originalsourceid><addsrcrecordid>eNpVkU1Lw0AQhhdRsFYP_gAh4MlDdGe_urkZ060GkmzZtOdlTbbYUo0mreC_N6Wl4mUGZt55hpkXoWvA90CAPQAJY11GIjpBAwJChjIS4hQNMI5wyKlg5-ii61YYYx4xOkBZHBj99JQWZZjrwuhganSixnOjgok2gSpnaR7PUl0EaRGUKk-nsYlzNTNpEhj1bFRZ7pq5HqusvERnC7fu_NUhD9F8ombJS5jp5zSJs7BimG9C7gXHRHAvmesjLFgthfSyZpWvwfm6qoEsyCuV1SsG4euacTcC5xxmwnNBh-hxz_1sm5WvNn5brZe1_WyX7679sY1b2mSeHaqH5JrOAqUjIiTBskfc7RFvbv1v8CXO7K7WP4iDpOQbeu3tcd3X1ncbu2q27Ud_oQVMRcQphtEfsWqbrmv94ogFbHfe9MHuvem1N3vtqts07VHIYARUcKC_FS2DJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1036953017</pqid></control><display><type>article</type><title>A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS</title><source>JSTOR Mathematics and Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR</source><creator>Bercu, Bernard ; Fraysse, Philippe</creator><creatorcontrib>Bercu, Bernard ; Fraysse, Philippe</creatorcontrib><description>This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar to that of Robbins-Monro in order to estimate the shift parameter. A preliminary evaluation of the regression function is not necessary to estimate the shift parameter. On the other hand, we make use of a recursive Nadaraya-Watson estimator for the estimation of the regression function. This kernel estimator takes into account the previous estimation of the shift parameter. We establish the almost sure convergence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic normality of our estimates is also provided. Finally, we illustrate our semiparametric estimation procedure on simulated and real data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/12-AOS969</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62G05 ; 62G20 ; asymptotic properties ; Confidence interval ; Density estimation ; Electrocardiography ; Estimating techniques ; estimation of a regression function ; estimation of a shift ; Estimators ; Martingales ; Mathematics ; Maximum likelihood estimation ; Parameter estimation ; Perceptron convergence procedure ; Probability ; Random variables ; Regression analysis ; Semiparametric estimation ; Shape functions ; Statistics ; Statistics Theory ; Studies</subject><ispartof>The Annals of statistics, 2012-04, Vol.40 (2), p.666-693</ispartof><rights>Copyright © 2011 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Apr 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2012 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5e650265e84a65e1f4d868e8d4ced1aedcd12f2b38cb016edd45a71aaa046e563</citedby><cites>FETCH-LOGICAL-c405t-5e650265e84a65e1f4d868e8d4ced1aedcd12f2b38cb016edd45a71aaa046e563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713651$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41713651$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00551832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bercu, Bernard</creatorcontrib><creatorcontrib>Fraysse, Philippe</creatorcontrib><title>A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS</title><title>The Annals of statistics</title><description>This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar to that of Robbins-Monro in order to estimate the shift parameter. A preliminary evaluation of the regression function is not necessary to estimate the shift parameter. On the other hand, we make use of a recursive Nadaraya-Watson estimator for the estimation of the regression function. This kernel estimator takes into account the previous estimation of the shift parameter. We establish the almost sure convergence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic normality of our estimates is also provided. Finally, we illustrate our semiparametric estimation procedure on simulated and real data.</description><subject>62G05</subject><subject>62G20</subject><subject>asymptotic properties</subject><subject>Confidence interval</subject><subject>Density estimation</subject><subject>Electrocardiography</subject><subject>Estimating techniques</subject><subject>estimation of a regression function</subject><subject>estimation of a shift</subject><subject>Estimators</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Perceptron convergence procedure</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Semiparametric estimation</subject><subject>Shape functions</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>Studies</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkU1Lw0AQhhdRsFYP_gAh4MlDdGe_urkZ060GkmzZtOdlTbbYUo0mreC_N6Wl4mUGZt55hpkXoWvA90CAPQAJY11GIjpBAwJChjIS4hQNMI5wyKlg5-ii61YYYx4xOkBZHBj99JQWZZjrwuhganSixnOjgok2gSpnaR7PUl0EaRGUKk-nsYlzNTNpEhj1bFRZ7pq5HqusvERnC7fu_NUhD9F8ombJS5jp5zSJs7BimG9C7gXHRHAvmesjLFgthfSyZpWvwfm6qoEsyCuV1SsG4euacTcC5xxmwnNBh-hxz_1sm5WvNn5brZe1_WyX7679sY1b2mSeHaqH5JrOAqUjIiTBskfc7RFvbv1v8CXO7K7WP4iDpOQbeu3tcd3X1ncbu2q27Ud_oQVMRcQphtEfsWqbrmv94ogFbHfe9MHuvem1N3vtqts07VHIYARUcKC_FS2DJA</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Bercu, Bernard</creator><creator>Fraysse, Philippe</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120401</creationdate><title>A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS</title><author>Bercu, Bernard ; Fraysse, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5e650265e84a65e1f4d868e8d4ced1aedcd12f2b38cb016edd45a71aaa046e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>62G05</topic><topic>62G20</topic><topic>asymptotic properties</topic><topic>Confidence interval</topic><topic>Density estimation</topic><topic>Electrocardiography</topic><topic>Estimating techniques</topic><topic>estimation of a regression function</topic><topic>estimation of a shift</topic><topic>Estimators</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Perceptron convergence procedure</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Semiparametric estimation</topic><topic>Shape functions</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bercu, Bernard</creatorcontrib><creatorcontrib>Fraysse, Philippe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bercu, Bernard</au><au>Fraysse, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS</atitle><jtitle>The Annals of statistics</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>40</volume><issue>2</issue><spage>666</spage><epage>693</epage><pages>666-693</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>This paper is devoted to the parametric estimation of a shift together with the nonparametric estimation of a regression function in a semiparametric regression model. We implement a very efficient and easy to handle Robbins-Monro procedure. On the one hand, we propose a stochastic algorithm similar to that of Robbins-Monro in order to estimate the shift parameter. A preliminary evaluation of the regression function is not necessary to estimate the shift parameter. On the other hand, we make use of a recursive Nadaraya-Watson estimator for the estimation of the regression function. This kernel estimator takes into account the previous estimation of the shift parameter. We establish the almost sure convergence for both Robbins-Monro and Nadaraya-Watson estimators. The asymptotic normality of our estimates is also provided. Finally, we illustrate our semiparametric estimation procedure on simulated and real data.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/12-AOS969</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2012-04, Vol.40 (2), p.666-693
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1337268208
source JSTOR Mathematics and Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR
subjects 62G05
62G20
asymptotic properties
Confidence interval
Density estimation
Electrocardiography
Estimating techniques
estimation of a regression function
estimation of a shift
Estimators
Martingales
Mathematics
Maximum likelihood estimation
Parameter estimation
Perceptron convergence procedure
Probability
Random variables
Regression analysis
Semiparametric estimation
Shape functions
Statistics
Statistics Theory
Studies
title A ROBBINS-MONRO PROCEDURE FOR ESTIMATION IN SEMIPARAMETRIC REGRESSION MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ROBBINS-MONRO%20PROCEDURE%20FOR%20ESTIMATION%20IN%20SEMIPARAMETRIC%20REGRESSION%20MODELS&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Bercu,%20Bernard&rft.date=2012-04-01&rft.volume=40&rft.issue=2&rft.spage=666&rft.epage=693&rft.pages=666-693&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/12-AOS969&rft_dat=%3Cjstor_proje%3E41713651%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1036953017&rft_id=info:pmid/&rft_jstor_id=41713651&rfr_iscdi=true