Asymptotics for Posterior Hazards

An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2009-08, Vol.37 (4), p.1906-1945
Hauptverfasser: De Blasi, Pierpaolo, Peccati, Giovanni, Prünster, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1945
container_issue 4
container_start_page 1906
container_title The Annals of statistics
container_volume 37
creator De Blasi, Pierpaolo
Peccati, Giovanni
Prünster, Igor
description An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.
doi_str_mv 10.1214/08-AOS631
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243691</jstor_id><sourcerecordid>30243691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsHf4BQBQ8eVicfm4-bpagVChW05xDyAbu0TU3Sg_56V3bZ0zvMPPPO8CJ0jeERE8yeQFbz9Sen-ARNCOaykorzUzQBUFDVlLNzdJFzCwC1YnSCbuf5Z3cosTQ2z0JMs4-Yi09NVy3Nr0kuX6KzYLbZXw06RZvXl6_Fslqt394X81VlGUCpGJU1U1J5Z2pDHBVMeCNCcJJIb53wTgpHAijuPMZGgRBBMh8IxYLjWtEpeu59Dym23hZ_tNvG6UNqdib96Ggavdishu4gJmaNCaspJZLyzuJutPg--lx0G49p332tseJSKSVoBz30kE0x5-TDeAKD_s9Qg9R9hh17PxiabM02JLO3TR4XCBaMcEU67qbn2lxiGucUCKNcYfoHRmB5Bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196899973</pqid></control><display><type>article</type><title>Asymptotics for Posterior Hazards</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</creator><creatorcontrib>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</creatorcontrib><description>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS631</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>60G57 ; 62G20 ; Asymptotic methods ; Asymptotics ; Bayesian analysis ; Bayesian consistency ; Bayesian nonparametrics ; Censorship ; Central limit theorem ; completely random measure ; Determinism ; Distribution theory ; Exact sciences and technology ; General topics ; Hazards ; Mathematical functions ; Mathematics ; Nonparametric inference ; Nonparametric models ; path-variance ; Probability and statistics ; Probability theory and stochastic processes ; random hazard rate ; Random variables ; Sample size ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Stochastic processes ; Studies ; Sufficient conditions ; Survival analysis</subject><ispartof>The Annals of statistics, 2009-08, Vol.37 (4), p.1906-1945</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</citedby><cites>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243691$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243691$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Blasi, Pierpaolo</creatorcontrib><creatorcontrib>Peccati, Giovanni</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><title>Asymptotics for Posterior Hazards</title><title>The Annals of statistics</title><description>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</description><subject>60G57</subject><subject>62G20</subject><subject>Asymptotic methods</subject><subject>Asymptotics</subject><subject>Bayesian analysis</subject><subject>Bayesian consistency</subject><subject>Bayesian nonparametrics</subject><subject>Censorship</subject><subject>Central limit theorem</subject><subject>completely random measure</subject><subject>Determinism</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Hazards</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Nonparametric models</subject><subject>path-variance</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>random hazard rate</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Survival analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsHf4BQBQ8eVicfm4-bpagVChW05xDyAbu0TU3Sg_56V3bZ0zvMPPPO8CJ0jeERE8yeQFbz9Sen-ARNCOaykorzUzQBUFDVlLNzdJFzCwC1YnSCbuf5Z3cosTQ2z0JMs4-Yi09NVy3Nr0kuX6KzYLbZXw06RZvXl6_Fslqt394X81VlGUCpGJU1U1J5Z2pDHBVMeCNCcJJIb53wTgpHAijuPMZGgRBBMh8IxYLjWtEpeu59Dym23hZ_tNvG6UNqdib96Ggavdishu4gJmaNCaspJZLyzuJutPg--lx0G49p332tseJSKSVoBz30kE0x5-TDeAKD_s9Qg9R9hh17PxiabM02JLO3TR4XCBaMcEU67qbn2lxiGucUCKNcYfoHRmB5Bw</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>De Blasi, Pierpaolo</creator><creator>Peccati, Giovanni</creator><creator>Prünster, Igor</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090801</creationdate><title>Asymptotics for Posterior Hazards</title><author>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60G57</topic><topic>62G20</topic><topic>Asymptotic methods</topic><topic>Asymptotics</topic><topic>Bayesian analysis</topic><topic>Bayesian consistency</topic><topic>Bayesian nonparametrics</topic><topic>Censorship</topic><topic>Central limit theorem</topic><topic>completely random measure</topic><topic>Determinism</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Hazards</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Nonparametric models</topic><topic>path-variance</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>random hazard rate</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Blasi, Pierpaolo</creatorcontrib><creatorcontrib>Peccati, Giovanni</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Blasi, Pierpaolo</au><au>Peccati, Giovanni</au><au>Prünster, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics for Posterior Hazards</atitle><jtitle>The Annals of statistics</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>4</issue><spage>1906</spage><epage>1945</epage><pages>1906-1945</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS631</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2009-08, Vol.37 (4), p.1906-1945
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332836
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 60G57
62G20
Asymptotic methods
Asymptotics
Bayesian analysis
Bayesian consistency
Bayesian nonparametrics
Censorship
Central limit theorem
completely random measure
Determinism
Distribution theory
Exact sciences and technology
General topics
Hazards
Mathematical functions
Mathematics
Nonparametric inference
Nonparametric models
path-variance
Probability and statistics
Probability theory and stochastic processes
random hazard rate
Random variables
Sample size
Sciences and techniques of general use
Statistical variance
Statistics
Stochastic processes
Studies
Sufficient conditions
Survival analysis
title Asymptotics for Posterior Hazards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20for%20Posterior%20Hazards&rft.jtitle=The%20Annals%20of%20statistics&rft.au=De%20Blasi,%20Pierpaolo&rft.date=2009-08-01&rft.volume=37&rft.issue=4&rft.spage=1906&rft.epage=1945&rft.pages=1906-1945&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/08-AOS631&rft_dat=%3Cjstor_proje%3E30243691%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196899973&rft_id=info:pmid/&rft_jstor_id=30243691&rfr_iscdi=true