Asymptotics for Posterior Hazards
An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive a...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2009-08, Vol.37 (4), p.1906-1945 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1945 |
---|---|
container_issue | 4 |
container_start_page | 1906 |
container_title | The Annals of statistics |
container_volume | 37 |
creator | De Blasi, Pierpaolo Peccati, Giovanni Prünster, Igor |
description | An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals. |
doi_str_mv | 10.1214/08-AOS631 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30243691</jstor_id><sourcerecordid>30243691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKsHf4BQBQ8eVicfm4-bpagVChW05xDyAbu0TU3Sg_56V3bZ0zvMPPPO8CJ0jeERE8yeQFbz9Sen-ARNCOaykorzUzQBUFDVlLNzdJFzCwC1YnSCbuf5Z3cosTQ2z0JMs4-Yi09NVy3Nr0kuX6KzYLbZXw06RZvXl6_Fslqt394X81VlGUCpGJU1U1J5Z2pDHBVMeCNCcJJIb53wTgpHAijuPMZGgRBBMh8IxYLjWtEpeu59Dym23hZ_tNvG6UNqdib96Ggavdishu4gJmaNCaspJZLyzuJutPg--lx0G49p332tseJSKSVoBz30kE0x5-TDeAKD_s9Qg9R9hh17PxiabM02JLO3TR4XCBaMcEU67qbn2lxiGucUCKNcYfoHRmB5Bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196899973</pqid></control><display><type>article</type><title>Asymptotics for Posterior Hazards</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</creator><creatorcontrib>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</creatorcontrib><description>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS631</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Cleveland, OH: Institute of Mathematical Statistics</publisher><subject>60G57 ; 62G20 ; Asymptotic methods ; Asymptotics ; Bayesian analysis ; Bayesian consistency ; Bayesian nonparametrics ; Censorship ; Central limit theorem ; completely random measure ; Determinism ; Distribution theory ; Exact sciences and technology ; General topics ; Hazards ; Mathematical functions ; Mathematics ; Nonparametric inference ; Nonparametric models ; path-variance ; Probability and statistics ; Probability theory and stochastic processes ; random hazard rate ; Random variables ; Sample size ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Stochastic processes ; Studies ; Sufficient conditions ; Survival analysis</subject><ispartof>The Annals of statistics, 2009-08, Vol.37 (4), p.1906-1945</ispartof><rights>Copyright 2009 Institute of Mathematical Statistics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</citedby><cites>FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30243691$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30243691$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21742692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>De Blasi, Pierpaolo</creatorcontrib><creatorcontrib>Peccati, Giovanni</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><title>Asymptotics for Posterior Hazards</title><title>The Annals of statistics</title><description>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</description><subject>60G57</subject><subject>62G20</subject><subject>Asymptotic methods</subject><subject>Asymptotics</subject><subject>Bayesian analysis</subject><subject>Bayesian consistency</subject><subject>Bayesian nonparametrics</subject><subject>Censorship</subject><subject>Central limit theorem</subject><subject>completely random measure</subject><subject>Determinism</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Hazards</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Nonparametric models</subject><subject>path-variance</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>random hazard rate</subject><subject>Random variables</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Survival analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKsHf4BQBQ8eVicfm4-bpagVChW05xDyAbu0TU3Sg_56V3bZ0zvMPPPO8CJ0jeERE8yeQFbz9Sen-ARNCOaykorzUzQBUFDVlLNzdJFzCwC1YnSCbuf5Z3cosTQ2z0JMs4-Yi09NVy3Nr0kuX6KzYLbZXw06RZvXl6_Fslqt394X81VlGUCpGJU1U1J5Z2pDHBVMeCNCcJJIb53wTgpHAijuPMZGgRBBMh8IxYLjWtEpeu59Dym23hZ_tNvG6UNqdib96Ggavdishu4gJmaNCaspJZLyzuJutPg--lx0G49p332tseJSKSVoBz30kE0x5-TDeAKD_s9Qg9R9hh17PxiabM02JLO3TR4XCBaMcEU67qbn2lxiGucUCKNcYfoHRmB5Bw</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>De Blasi, Pierpaolo</creator><creator>Peccati, Giovanni</creator><creator>Prünster, Igor</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20090801</creationdate><title>Asymptotics for Posterior Hazards</title><author>De Blasi, Pierpaolo ; Peccati, Giovanni ; Prünster, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-43854989eda5a2d3747ea7ffd828ecd7ed87d2f096de11a9077f84ef231761593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>60G57</topic><topic>62G20</topic><topic>Asymptotic methods</topic><topic>Asymptotics</topic><topic>Bayesian analysis</topic><topic>Bayesian consistency</topic><topic>Bayesian nonparametrics</topic><topic>Censorship</topic><topic>Central limit theorem</topic><topic>completely random measure</topic><topic>Determinism</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Hazards</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Nonparametric models</topic><topic>path-variance</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>random hazard rate</topic><topic>Random variables</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Blasi, Pierpaolo</creatorcontrib><creatorcontrib>Peccati, Giovanni</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Blasi, Pierpaolo</au><au>Peccati, Giovanni</au><au>Prünster, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics for Posterior Hazards</atitle><jtitle>The Annals of statistics</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>4</issue><spage>1906</spage><epage>1945</epage><pages>1906-1945</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>An important issue in survival analysis is the investigation and the modeling of hazard rates. Within a Bayesian nonparametric framework, a natural and popular approach is to model hazard rates as kernel mixtures with respect to a completely random measure. In this paper we provide a comprehensive analysis of the asymptotic behavior of such models. We investigate consistency of the posterior distribution and derive fixed sample size central limit theorems for both linear and quadratic functionals of the posterior hazard rate. The general results are then specialized to various specific kernels and mixing measures yielding consistency under minimal conditions and neat central limit theorems for the distribution of functionals.</abstract><cop>Cleveland, OH</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS631</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2009-08, Vol.37 (4), p.1906-1945 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1245332836 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 60G57 62G20 Asymptotic methods Asymptotics Bayesian analysis Bayesian consistency Bayesian nonparametrics Censorship Central limit theorem completely random measure Determinism Distribution theory Exact sciences and technology General topics Hazards Mathematical functions Mathematics Nonparametric inference Nonparametric models path-variance Probability and statistics Probability theory and stochastic processes random hazard rate Random variables Sample size Sciences and techniques of general use Statistical variance Statistics Stochastic processes Studies Sufficient conditions Survival analysis |
title | Asymptotics for Posterior Hazards |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20for%20Posterior%20Hazards&rft.jtitle=The%20Annals%20of%20statistics&rft.au=De%20Blasi,%20Pierpaolo&rft.date=2009-08-01&rft.volume=37&rft.issue=4&rft.spage=1906&rft.epage=1945&rft.pages=1906-1945&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/08-AOS631&rft_dat=%3Cjstor_proje%3E30243691%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196899973&rft_id=info:pmid/&rft_jstor_id=30243691&rfr_iscdi=true |