Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference prob...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2008-12, Vol.36 (6), p.2886-2919 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2919 |
---|---|
container_issue | 6 |
container_start_page | 2886 |
container_title | The Annals of statistics |
container_volume | 36 |
creator | Schwartzman, Armin Mascarenhas, Walter F. Taylor, Jonathan E. |
description | This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure. |
doi_str_mv | 10.1214/08-AOS628 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1231165188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464736</jstor_id><sourcerecordid>25464736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFYPfgAhePMQnf2T3ezNUmotVHqoPS-bzUYS2mzdTYR-e7ck9PSY4TdvZh5CjxheMcHsDfJ0ttlykl-hCcE8T3PJ-TWaAEhIM8rZLboLoQGATDI6QatVW1lvW2OTyvlkUf_Y9k_vexsS3ZZjbU3nfEhclSx1H0Kt22R7Ohxs52uTfOmz2HCPbiq9D_Zh1CnafSy-55_perNczWfr1FABXaqBc800SKopkdRaJjDoXFAmC2kIgaIsKk5LK6wWphCQlUTGgRKYqAQzdIreB9-jd028zPZmX5fq6OuD9ifldK3mu_XYHUW7oDChGPMM53m0eL5Y_MZXO9W43rfxaoUllzFHISP0MkDGuxC8rS4rMKhz1gpyNWQd2aeBbUJM6gKSjHEmKKf_aLd7QA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196921479</pqid></control><display><type>article</type><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</creator><creatorcontrib>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</creatorcontrib><description>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS628</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62H11 ; 62H12 ; 62H15 ; 92C55 ; Covariance ; Covariance matrices ; Critical points ; curved exponential family ; Eigenvalues ; Eigenvectors ; Euclidean space ; Inference ; likelihood ratio test ; Matrices ; Matrix ; maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood method ; orthogonally invariant ; Random matrix ; Statistical inference ; Studies ; submanifold ; Symmetry ; Tensors ; Variance analysis</subject><ispartof>The Annals of statistics, 2008-12, Vol.36 (6), p.2886-2919</ispartof><rights>Copyright 2008 The Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Dec 2008</rights><rights>Copyright 2008 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</citedby><cites>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464736$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464736$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Mascarenhas, Walter F.</creatorcontrib><creatorcontrib>Taylor, Jonathan E.</creatorcontrib><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><title>The Annals of statistics</title><description>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</description><subject>62H11</subject><subject>62H12</subject><subject>62H15</subject><subject>92C55</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Critical points</subject><subject>curved exponential family</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Euclidean space</subject><subject>Inference</subject><subject>likelihood ratio test</subject><subject>Matrices</subject><subject>Matrix</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>orthogonally invariant</subject><subject>Random matrix</subject><subject>Statistical inference</subject><subject>Studies</subject><subject>submanifold</subject><subject>Symmetry</subject><subject>Tensors</subject><subject>Variance analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsFYPfgAhePMQnf2T3ezNUmotVHqoPS-bzUYS2mzdTYR-e7ck9PSY4TdvZh5CjxheMcHsDfJ0ttlykl-hCcE8T3PJ-TWaAEhIM8rZLboLoQGATDI6QatVW1lvW2OTyvlkUf_Y9k_vexsS3ZZjbU3nfEhclSx1H0Kt22R7Ohxs52uTfOmz2HCPbiq9D_Zh1CnafSy-55_perNczWfr1FABXaqBc800SKopkdRaJjDoXFAmC2kIgaIsKk5LK6wWphCQlUTGgRKYqAQzdIreB9-jd028zPZmX5fq6OuD9ifldK3mu_XYHUW7oDChGPMM53m0eL5Y_MZXO9W43rfxaoUllzFHISP0MkDGuxC8rS4rMKhz1gpyNWQd2aeBbUJM6gKSjHEmKKf_aLd7QA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Schwartzman, Armin</creator><creator>Mascarenhas, Walter F.</creator><creator>Taylor, Jonathan E.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20081201</creationdate><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><author>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>62H11</topic><topic>62H12</topic><topic>62H15</topic><topic>92C55</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Critical points</topic><topic>curved exponential family</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Euclidean space</topic><topic>Inference</topic><topic>likelihood ratio test</topic><topic>Matrices</topic><topic>Matrix</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>orthogonally invariant</topic><topic>Random matrix</topic><topic>Statistical inference</topic><topic>Studies</topic><topic>submanifold</topic><topic>Symmetry</topic><topic>Tensors</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Mascarenhas, Walter F.</creatorcontrib><creatorcontrib>Taylor, Jonathan E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartzman, Armin</au><au>Mascarenhas, Walter F.</au><au>Taylor, Jonathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</atitle><jtitle>The Annals of statistics</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>36</volume><issue>6</issue><spage>2886</spage><epage>2919</epage><pages>2886-2919</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS628</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2008-12, Vol.36 (6), p.2886-2919 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1231165188 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 62H11 62H12 62H15 92C55 Covariance Covariance matrices Critical points curved exponential family Eigenvalues Eigenvectors Euclidean space Inference likelihood ratio test Matrices Matrix maximum likelihood Maximum likelihood estimation Maximum likelihood method orthogonally invariant Random matrix Statistical inference Studies submanifold Symmetry Tensors Variance analysis |
title | Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20Eigenvalues%20and%20Eigenvectors%20of%20Gaussian%20Symmetric%20Matrices&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Schwartzman,%20Armin&rft.date=2008-12-01&rft.volume=36&rft.issue=6&rft.spage=2886&rft.epage=2919&rft.pages=2886-2919&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/08-AOS628&rft_dat=%3Cjstor_proje%3E25464736%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196921479&rft_id=info:pmid/&rft_jstor_id=25464736&rfr_iscdi=true |