Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices

This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2008-12, Vol.36 (6), p.2886-2919
Hauptverfasser: Schwartzman, Armin, Mascarenhas, Walter F., Taylor, Jonathan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2919
container_issue 6
container_start_page 2886
container_title The Annals of statistics
container_volume 36
creator Schwartzman, Armin
Mascarenhas, Walter F.
Taylor, Jonathan E.
description This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
doi_str_mv 10.1214/08-AOS628
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1231165188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464736</jstor_id><sourcerecordid>25464736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFYPfgAhePMQnf2T3ezNUmotVHqoPS-bzUYS2mzdTYR-e7ck9PSY4TdvZh5CjxheMcHsDfJ0ttlykl-hCcE8T3PJ-TWaAEhIM8rZLboLoQGATDI6QatVW1lvW2OTyvlkUf_Y9k_vexsS3ZZjbU3nfEhclSx1H0Kt22R7Ohxs52uTfOmz2HCPbiq9D_Zh1CnafSy-55_perNczWfr1FABXaqBc800SKopkdRaJjDoXFAmC2kIgaIsKk5LK6wWphCQlUTGgRKYqAQzdIreB9-jd028zPZmX5fq6OuD9ifldK3mu_XYHUW7oDChGPMM53m0eL5Y_MZXO9W43rfxaoUllzFHISP0MkDGuxC8rS4rMKhz1gpyNWQd2aeBbUJM6gKSjHEmKKf_aLd7QA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196921479</pqid></control><display><type>article</type><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</creator><creatorcontrib>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</creatorcontrib><description>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/08-AOS628</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>62H11 ; 62H12 ; 62H15 ; 92C55 ; Covariance ; Covariance matrices ; Critical points ; curved exponential family ; Eigenvalues ; Eigenvectors ; Euclidean space ; Inference ; likelihood ratio test ; Matrices ; Matrix ; maximum likelihood ; Maximum likelihood estimation ; Maximum likelihood method ; orthogonally invariant ; Random matrix ; Statistical inference ; Studies ; submanifold ; Symmetry ; Tensors ; Variance analysis</subject><ispartof>The Annals of statistics, 2008-12, Vol.36 (6), p.2886-2919</ispartof><rights>Copyright 2008 The Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Dec 2008</rights><rights>Copyright 2008 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</citedby><cites>FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464736$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464736$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Mascarenhas, Walter F.</creatorcontrib><creatorcontrib>Taylor, Jonathan E.</creatorcontrib><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><title>The Annals of statistics</title><description>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</description><subject>62H11</subject><subject>62H12</subject><subject>62H15</subject><subject>92C55</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Critical points</subject><subject>curved exponential family</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Euclidean space</subject><subject>Inference</subject><subject>likelihood ratio test</subject><subject>Matrices</subject><subject>Matrix</subject><subject>maximum likelihood</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood method</subject><subject>orthogonally invariant</subject><subject>Random matrix</subject><subject>Statistical inference</subject><subject>Studies</subject><subject>submanifold</subject><subject>Symmetry</subject><subject>Tensors</subject><subject>Variance analysis</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AQxRdRsFYPfgAhePMQnf2T3ezNUmotVHqoPS-bzUYS2mzdTYR-e7ck9PSY4TdvZh5CjxheMcHsDfJ0ttlykl-hCcE8T3PJ-TWaAEhIM8rZLboLoQGATDI6QatVW1lvW2OTyvlkUf_Y9k_vexsS3ZZjbU3nfEhclSx1H0Kt22R7Ohxs52uTfOmz2HCPbiq9D_Zh1CnafSy-55_perNczWfr1FABXaqBc800SKopkdRaJjDoXFAmC2kIgaIsKk5LK6wWphCQlUTGgRKYqAQzdIreB9-jd028zPZmX5fq6OuD9ifldK3mu_XYHUW7oDChGPMM53m0eL5Y_MZXO9W43rfxaoUllzFHISP0MkDGuxC8rS4rMKhz1gpyNWQd2aeBbUJM6gKSjHEmKKf_aLd7QA</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Schwartzman, Armin</creator><creator>Mascarenhas, Walter F.</creator><creator>Taylor, Jonathan E.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20081201</creationdate><title>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</title><author>Schwartzman, Armin ; Mascarenhas, Walter F. ; Taylor, Jonathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-a066a4a093a3293ee4710a87349b9c220bdbf63de7ea7cb705d29a4ad047f74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>62H11</topic><topic>62H12</topic><topic>62H15</topic><topic>92C55</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Critical points</topic><topic>curved exponential family</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Euclidean space</topic><topic>Inference</topic><topic>likelihood ratio test</topic><topic>Matrices</topic><topic>Matrix</topic><topic>maximum likelihood</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood method</topic><topic>orthogonally invariant</topic><topic>Random matrix</topic><topic>Statistical inference</topic><topic>Studies</topic><topic>submanifold</topic><topic>Symmetry</topic><topic>Tensors</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartzman, Armin</creatorcontrib><creatorcontrib>Mascarenhas, Walter F.</creatorcontrib><creatorcontrib>Taylor, Jonathan E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartzman, Armin</au><au>Mascarenhas, Walter F.</au><au>Taylor, Jonathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices</atitle><jtitle>The Annals of statistics</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>36</volume><issue>6</issue><spage>2886</spage><epage>2919</epage><pages>2886-2919</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 × 3 and 2 × 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/08-AOS628</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2008-12, Vol.36 (6), p.2886-2919
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1231165188
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62H11
62H12
62H15
92C55
Covariance
Covariance matrices
Critical points
curved exponential family
Eigenvalues
Eigenvectors
Euclidean space
Inference
likelihood ratio test
Matrices
Matrix
maximum likelihood
Maximum likelihood estimation
Maximum likelihood method
orthogonally invariant
Random matrix
Statistical inference
Studies
submanifold
Symmetry
Tensors
Variance analysis
title Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20Eigenvalues%20and%20Eigenvectors%20of%20Gaussian%20Symmetric%20Matrices&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Schwartzman,%20Armin&rft.date=2008-12-01&rft.volume=36&rft.issue=6&rft.spage=2886&rft.epage=2919&rft.pages=2886-2919&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/08-AOS628&rft_dat=%3Cjstor_proje%3E25464736%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196921479&rft_id=info:pmid/&rft_jstor_id=25464736&rfr_iscdi=true