Inference for Mixtures of Symmetric Distributions

This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2007-02, Vol.35 (1), p.224-251
Hauptverfasser: Hunter, David R., Wang, Shaoli, Hettmansperger, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 1
container_start_page 224
container_title The Annals of statistics
container_volume 35
creator Hunter, David R.
Wang, Shaoli
Hettmansperger, Thomas P.
description This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.
doi_str_mv 10.1214/009053606000001118
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1181100187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463554</jstor_id><sourcerecordid>25463554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKt_QBAGweVo3o-d0vooVFxo1yFNE8jQTmoyA_bfm9KhLrybE3K_e25yALhG8B5hRB8gVJARDjncF0JInoARRlzWUnF-CkZ7oC4EPQcXOTcFYoqSEUCz1rvkWusqH1P1Hn66PrlcRV997jYb16Vgq2nIRZd9F2KbL8GZN-vsrgYdg8XL89fkrZ5_vM4mT_PaUiy6WhADMeRGMEcloRQuIcJLi1eClpLMSC6MKZBHnlijlFTGr4S0pVkOnozB48F3m2LjbOd6uw4rvU1hY9JORxP0ZDEfbgcxMevyd4RKBlIUi9ujxXfvcqeb2Ke2vFojxRVigqsC4QNkU8w5OX9cgaDeh6v_h1uG7gZnk61Z-2RaG_LfpJRKFKxwNweuyV1Mxz5mlBPGKPkF4U-Buw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196915769</pqid></control><display><type>article</type><title>Inference for Mixtures of Symmetric Distributions</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</creator><creatorcontrib>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</creatorcontrib><description>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053606000001118</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G05 ; Datasets ; Deconvolution ; Distribution functions ; Distribution theory ; Estimating techniques ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; Hodges–Lehmann estimator ; Identifiability ; Inference ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Mixture Models ; Parametric inference ; Parametric models ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; semi-parametric mixtures ; Statistical discrepancies ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>The Annals of statistics, 2007-02, Vol.35 (1), p.224-251</ispartof><rights>Copyright 2007 Institute of Mathematical Statistics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Feb 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</citedby><cites>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463554$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463554$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18897183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, David R.</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><title>Inference for Mixtures of Symmetric Distributions</title><title>The Annals of statistics</title><description>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</description><subject>62G05</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hodges–Lehmann estimator</subject><subject>Identifiability</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Mixture Models</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>semi-parametric mixtures</subject><subject>Statistical discrepancies</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWKt_QBAGweVo3o-d0vooVFxo1yFNE8jQTmoyA_bfm9KhLrybE3K_e25yALhG8B5hRB8gVJARDjncF0JInoARRlzWUnF-CkZ7oC4EPQcXOTcFYoqSEUCz1rvkWusqH1P1Hn66PrlcRV997jYb16Vgq2nIRZd9F2KbL8GZN-vsrgYdg8XL89fkrZ5_vM4mT_PaUiy6WhADMeRGMEcloRQuIcJLi1eClpLMSC6MKZBHnlijlFTGr4S0pVkOnozB48F3m2LjbOd6uw4rvU1hY9JORxP0ZDEfbgcxMevyd4RKBlIUi9ujxXfvcqeb2Ke2vFojxRVigqsC4QNkU8w5OX9cgaDeh6v_h1uG7gZnk61Z-2RaG_LfpJRKFKxwNweuyV1Mxz5mlBPGKPkF4U-Buw</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Hunter, David R.</creator><creator>Wang, Shaoli</creator><creator>Hettmansperger, Thomas P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20070201</creationdate><title>Inference for Mixtures of Symmetric Distributions</title><author>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>62G05</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hodges–Lehmann estimator</topic><topic>Identifiability</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Mixture Models</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>semi-parametric mixtures</topic><topic>Statistical discrepancies</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, David R.</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, David R.</au><au>Wang, Shaoli</au><au>Hettmansperger, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for Mixtures of Symmetric Distributions</atitle><jtitle>The Annals of statistics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>35</volume><issue>1</issue><spage>224</spage><epage>251</epage><pages>224-251</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053606000001118</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2007-02, Vol.35 (1), p.224-251
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1181100187
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62G05
Datasets
Deconvolution
Distribution functions
Distribution theory
Estimating techniques
Estimation methods
Estimators
Exact sciences and technology
General topics
Global analysis, analysis on manifolds
Hodges–Lehmann estimator
Identifiability
Inference
Mathematical models
Mathematics
Maximum likelihood estimation
Mixture Models
Parametric inference
Parametric models
Probability and statistics
Probability theory and stochastic processes
Random variables
Sciences and techniques of general use
semi-parametric mixtures
Statistical discrepancies
Statistics
Studies
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Inference for Mixtures of Symmetric Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20Mixtures%20of%20Symmetric%20Distributions&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Hunter,%20David%20R.&rft.date=2007-02-01&rft.volume=35&rft.issue=1&rft.spage=224&rft.epage=251&rft.pages=224-251&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053606000001118&rft_dat=%3Cjstor_proje%3E25463554%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196915769&rft_id=info:pmid/&rft_jstor_id=25463554&rfr_iscdi=true