Inference for Mixtures of Symmetric Distributions
This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2007-02, Vol.35 (1), p.224-251 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 1 |
container_start_page | 224 |
container_title | The Annals of statistics |
container_volume | 35 |
creator | Hunter, David R. Wang, Shaoli Hettmansperger, Thomas P. |
description | This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed. |
doi_str_mv | 10.1214/009053606000001118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1181100187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463554</jstor_id><sourcerecordid>25463554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKt_QBAGweVo3o-d0vooVFxo1yFNE8jQTmoyA_bfm9KhLrybE3K_e25yALhG8B5hRB8gVJARDjncF0JInoARRlzWUnF-CkZ7oC4EPQcXOTcFYoqSEUCz1rvkWusqH1P1Hn66PrlcRV997jYb16Vgq2nIRZd9F2KbL8GZN-vsrgYdg8XL89fkrZ5_vM4mT_PaUiy6WhADMeRGMEcloRQuIcJLi1eClpLMSC6MKZBHnlijlFTGr4S0pVkOnozB48F3m2LjbOd6uw4rvU1hY9JORxP0ZDEfbgcxMevyd4RKBlIUi9ujxXfvcqeb2Ke2vFojxRVigqsC4QNkU8w5OX9cgaDeh6v_h1uG7gZnk61Z-2RaG_LfpJRKFKxwNweuyV1Mxz5mlBPGKPkF4U-Buw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196915769</pqid></control><display><type>article</type><title>Inference for Mixtures of Symmetric Distributions</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</creator><creatorcontrib>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</creatorcontrib><description>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053606000001118</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G05 ; Datasets ; Deconvolution ; Distribution functions ; Distribution theory ; Estimating techniques ; Estimation methods ; Estimators ; Exact sciences and technology ; General topics ; Global analysis, analysis on manifolds ; Hodges–Lehmann estimator ; Identifiability ; Inference ; Mathematical models ; Mathematics ; Maximum likelihood estimation ; Mixture Models ; Parametric inference ; Parametric models ; Probability and statistics ; Probability theory and stochastic processes ; Random variables ; Sciences and techniques of general use ; semi-parametric mixtures ; Statistical discrepancies ; Statistics ; Studies ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>The Annals of statistics, 2007-02, Vol.35 (1), p.224-251</ispartof><rights>Copyright 2007 Institute of Mathematical Statistics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Feb 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</citedby><cites>FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463554$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463554$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18897183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, David R.</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><title>Inference for Mixtures of Symmetric Distributions</title><title>The Annals of statistics</title><description>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</description><subject>62G05</subject><subject>Datasets</subject><subject>Deconvolution</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Estimating techniques</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Global analysis, analysis on manifolds</subject><subject>Hodges–Lehmann estimator</subject><subject>Identifiability</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Mixture Models</subject><subject>Parametric inference</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>semi-parametric mixtures</subject><subject>Statistical discrepancies</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWKt_QBAGweVo3o-d0vooVFxo1yFNE8jQTmoyA_bfm9KhLrybE3K_e25yALhG8B5hRB8gVJARDjncF0JInoARRlzWUnF-CkZ7oC4EPQcXOTcFYoqSEUCz1rvkWusqH1P1Hn66PrlcRV997jYb16Vgq2nIRZd9F2KbL8GZN-vsrgYdg8XL89fkrZ5_vM4mT_PaUiy6WhADMeRGMEcloRQuIcJLi1eClpLMSC6MKZBHnlijlFTGr4S0pVkOnozB48F3m2LjbOd6uw4rvU1hY9JORxP0ZDEfbgcxMevyd4RKBlIUi9ujxXfvcqeb2Ke2vFojxRVigqsC4QNkU8w5OX9cgaDeh6v_h1uG7gZnk61Z-2RaG_LfpJRKFKxwNweuyV1Mxz5mlBPGKPkF4U-Buw</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Hunter, David R.</creator><creator>Wang, Shaoli</creator><creator>Hettmansperger, Thomas P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20070201</creationdate><title>Inference for Mixtures of Symmetric Distributions</title><author>Hunter, David R. ; Wang, Shaoli ; Hettmansperger, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-73a0206a75e483440b012bc2d7444485a867aa3a0f1f3ca9989afd78c448afdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>62G05</topic><topic>Datasets</topic><topic>Deconvolution</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Estimating techniques</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Global analysis, analysis on manifolds</topic><topic>Hodges–Lehmann estimator</topic><topic>Identifiability</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Mixture Models</topic><topic>Parametric inference</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>semi-parametric mixtures</topic><topic>Statistical discrepancies</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, David R.</creatorcontrib><creatorcontrib>Wang, Shaoli</creatorcontrib><creatorcontrib>Hettmansperger, Thomas P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, David R.</au><au>Wang, Shaoli</au><au>Hettmansperger, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for Mixtures of Symmetric Distributions</atitle><jtitle>The Annals of statistics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>35</volume><issue>1</issue><spage>224</spage><epage>251</epage><pages>224-251</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>This article discusses the problem of estimation of parameters in finite mixtures when the mixture components are assumed to be symmetric and to come from the same location family. We refer to these mixtures as semi-parametric because no additional assumptions other than symmetry are made regarding the parametric form of the component distributions. Because the class of symmetric distributions is so broad, identifiability of parameters is a major issue in these mixtures. We develop a notion of identifiability of finite mixture models, which we call k-identifiability, where k denotes the number of components in the mixture. We give sufficient conditions for k-identifiability of location mixtures of symmetric components when k = 2 or 3. We propose a novel distance-based method for estimating the (location and mixing) parameters from a k-identifiable model and establish the strong consistency and asymptotic normality of the estimator. In the specific case of L₂-distance, we show that our estimator generalizes the Hodges-Lehmann estimator. We discuss the numerical implementation of these procedures, along with an empirical estimate of the component distribution, in the two-component case. In comparisons with maximum likelihood estimation assuming normal components, our method produces somewhat higher standard error estimates in the case where the components are truly normal, but dramatically outperforms the normal method when the components are heavy-tailed.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053606000001118</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2007-02, Vol.35 (1), p.224-251 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1181100187 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 62G05 Datasets Deconvolution Distribution functions Distribution theory Estimating techniques Estimation methods Estimators Exact sciences and technology General topics Global analysis, analysis on manifolds Hodges–Lehmann estimator Identifiability Inference Mathematical models Mathematics Maximum likelihood estimation Mixture Models Parametric inference Parametric models Probability and statistics Probability theory and stochastic processes Random variables Sciences and techniques of general use semi-parametric mixtures Statistical discrepancies Statistics Studies Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Inference for Mixtures of Symmetric Distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20Mixtures%20of%20Symmetric%20Distributions&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Hunter,%20David%20R.&rft.date=2007-02-01&rft.volume=35&rft.issue=1&rft.spage=224&rft.epage=251&rft.pages=224-251&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053606000001118&rft_dat=%3Cjstor_proje%3E25463554%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196915769&rft_id=info:pmid/&rft_jstor_id=25463554&rfr_iscdi=true |