A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation

In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole block...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1992-12, Vol.20 (4), p.1985-2007
Hauptverfasser: Politis, Dimitris N., Romano, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 4
container_start_page 1985
container_title The Annals of statistics
container_volume 20
creator Politis, Dimitris N.
Romano, Joseph P.
description In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.
doi_str_mv 10.1214/aos/1176348899
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242377</jstor_id><sourcerecordid>2242377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</originalsourceid><addsrcrecordid>eNplkUtOwzAQhi0EEqWwZcXCC7Ypduw4yY6olIdUBCqPbWQcm7pK4sg2gl6Cu3ARzoRDo7JgJGskz_f_M5oB4BijCY4xPePGnWGcMkKzLM93wCjGLIuynLFdMEIoR1FCGN0HB86tEEJJTskIfBbwSrbS8houpONNV-v2FT6IpWwkVMbCR6t5-_pWcwsLa_naQaPg91d0qz96csHbyjTwmQfspZYOvmu_hEUXfAT32rTQG-iXEt5bE-pNr37opPB9xwvZOu3XcOa8bn7pQ7CneO3k0ZDH4Oly9ji9juZ3VzfTYh4JgpmPcCZzpIjkWORYJCEUqkha8YqSJM5wWikWJ6lA6AWL8HAaK8UwY4nMKBGKjMH5xrezZhWmkW-i1lXZ2TCHXZeG63L6NB9-hxT2W_7tN1hMNhbCGuesVFs1RmV_kP-C06End4LXyvJWaLdVUYZyynDATjbYynljt-U4pjFJU_IDVHmX_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Politis, Dimitris N. ; Romano, Joseph P.</creator><creatorcontrib>Politis, Dimitris N. ; Romano, Joseph P.</creatorcontrib><description>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176348899</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G05 ; 62M10 ; bootstrap ; Confidence interval ; Consistent estimators ; Density estimation ; Estimators ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Integers ; jackknife ; Mathematics ; nonparametric estimation ; Probability and statistics ; Random variables ; resampling methods ; Sample mean ; Sciences and techniques of general use ; spectral density ; Spectral energy distribution ; Statistical variance ; Statistics ; Time series ; weak dependence</subject><ispartof>The Annals of statistics, 1992-12, Vol.20 (4), p.1985-2007</ispartof><rights>Copyright 1992 Institute of Mathematical Statistics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4609461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Politis, Dimitris N.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><title>The Annals of statistics</title><description>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</description><subject>62G05</subject><subject>62M10</subject><subject>bootstrap</subject><subject>Confidence interval</subject><subject>Consistent estimators</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Integers</subject><subject>jackknife</subject><subject>Mathematics</subject><subject>nonparametric estimation</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>resampling methods</subject><subject>Sample mean</subject><subject>Sciences and techniques of general use</subject><subject>spectral density</subject><subject>Spectral energy distribution</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Time series</subject><subject>weak dependence</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkUtOwzAQhi0EEqWwZcXCC7Ypduw4yY6olIdUBCqPbWQcm7pK4sg2gl6Cu3ARzoRDo7JgJGskz_f_M5oB4BijCY4xPePGnWGcMkKzLM93wCjGLIuynLFdMEIoR1FCGN0HB86tEEJJTskIfBbwSrbS8houpONNV-v2FT6IpWwkVMbCR6t5-_pWcwsLa_naQaPg91d0qz96csHbyjTwmQfspZYOvmu_hEUXfAT32rTQG-iXEt5bE-pNr37opPB9xwvZOu3XcOa8bn7pQ7CneO3k0ZDH4Oly9ji9juZ3VzfTYh4JgpmPcCZzpIjkWORYJCEUqkha8YqSJM5wWikWJ6lA6AWL8HAaK8UwY4nMKBGKjMH5xrezZhWmkW-i1lXZ2TCHXZeG63L6NB9-hxT2W_7tN1hMNhbCGuesVFs1RmV_kP-C06End4LXyvJWaLdVUYZyynDATjbYynljt-U4pjFJU_IDVHmX_A</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Politis, Dimitris N.</creator><creator>Romano, Joseph P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19921201</creationdate><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><author>Politis, Dimitris N. ; Romano, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>62G05</topic><topic>62M10</topic><topic>bootstrap</topic><topic>Confidence interval</topic><topic>Consistent estimators</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Integers</topic><topic>jackknife</topic><topic>Mathematics</topic><topic>nonparametric estimation</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>resampling methods</topic><topic>Sample mean</topic><topic>Sciences and techniques of general use</topic><topic>spectral density</topic><topic>Spectral energy distribution</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Time series</topic><topic>weak dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Politis, Dimitris N.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Politis, Dimitris N.</au><au>Romano, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</atitle><jtitle>The Annals of statistics</jtitle><date>1992-12-01</date><risdate>1992</risdate><volume>20</volume><issue>4</issue><spage>1985</spage><epage>2007</epage><pages>1985-2007</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176348899</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1992-12, Vol.20 (4), p.1985-2007
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348899
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 62G05
62M10
bootstrap
Confidence interval
Consistent estimators
Density estimation
Estimators
Exact sciences and technology
Inference from stochastic processes
time series analysis
Integers
jackknife
Mathematics
nonparametric estimation
Probability and statistics
Random variables
resampling methods
Sample mean
Sciences and techniques of general use
spectral density
Spectral energy distribution
Statistical variance
Statistics
Time series
weak dependence
title A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Resampling%20Scheme%20for%20Triangular%20Arrays%20of%20%CE%B1-Mixing%20Random%20Variables%20with%20Application%20to%20the%20Problem%20of%20Spectral%20Density%20Estimation&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Politis,%20Dimitris%20N.&rft.date=1992-12-01&rft.volume=20&rft.issue=4&rft.spage=1985&rft.epage=2007&rft.pages=1985-2007&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176348899&rft_dat=%3Cjstor_proje%3E2242377%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242377&rfr_iscdi=true