A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation
In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole block...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1992-12, Vol.20 (4), p.1985-2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2007 |
---|---|
container_issue | 4 |
container_start_page | 1985 |
container_title | The Annals of statistics |
container_volume | 20 |
creator | Politis, Dimitris N. Romano, Joseph P. |
description | In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density. |
doi_str_mv | 10.1214/aos/1176348899 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242377</jstor_id><sourcerecordid>2242377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</originalsourceid><addsrcrecordid>eNplkUtOwzAQhi0EEqWwZcXCC7Ypduw4yY6olIdUBCqPbWQcm7pK4sg2gl6Cu3ARzoRDo7JgJGskz_f_M5oB4BijCY4xPePGnWGcMkKzLM93wCjGLIuynLFdMEIoR1FCGN0HB86tEEJJTskIfBbwSrbS8houpONNV-v2FT6IpWwkVMbCR6t5-_pWcwsLa_naQaPg91d0qz96csHbyjTwmQfspZYOvmu_hEUXfAT32rTQG-iXEt5bE-pNr37opPB9xwvZOu3XcOa8bn7pQ7CneO3k0ZDH4Oly9ji9juZ3VzfTYh4JgpmPcCZzpIjkWORYJCEUqkha8YqSJM5wWikWJ6lA6AWL8HAaK8UwY4nMKBGKjMH5xrezZhWmkW-i1lXZ2TCHXZeG63L6NB9-hxT2W_7tN1hMNhbCGuesVFs1RmV_kP-C06End4LXyvJWaLdVUYZyynDATjbYynljt-U4pjFJU_IDVHmX_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Politis, Dimitris N. ; Romano, Joseph P.</creator><creatorcontrib>Politis, Dimitris N. ; Romano, Joseph P.</creatorcontrib><description>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176348899</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G05 ; 62M10 ; bootstrap ; Confidence interval ; Consistent estimators ; Density estimation ; Estimators ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Integers ; jackknife ; Mathematics ; nonparametric estimation ; Probability and statistics ; Random variables ; resampling methods ; Sample mean ; Sciences and techniques of general use ; spectral density ; Spectral energy distribution ; Statistical variance ; Statistics ; Time series ; weak dependence</subject><ispartof>The Annals of statistics, 1992-12, Vol.20 (4), p.1985-2007</ispartof><rights>Copyright 1992 Institute of Mathematical Statistics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242377$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242377$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4609461$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Politis, Dimitris N.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><title>The Annals of statistics</title><description>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</description><subject>62G05</subject><subject>62M10</subject><subject>bootstrap</subject><subject>Confidence interval</subject><subject>Consistent estimators</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Integers</subject><subject>jackknife</subject><subject>Mathematics</subject><subject>nonparametric estimation</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>resampling methods</subject><subject>Sample mean</subject><subject>Sciences and techniques of general use</subject><subject>spectral density</subject><subject>Spectral energy distribution</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Time series</subject><subject>weak dependence</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkUtOwzAQhi0EEqWwZcXCC7Ypduw4yY6olIdUBCqPbWQcm7pK4sg2gl6Cu3ARzoRDo7JgJGskz_f_M5oB4BijCY4xPePGnWGcMkKzLM93wCjGLIuynLFdMEIoR1FCGN0HB86tEEJJTskIfBbwSrbS8houpONNV-v2FT6IpWwkVMbCR6t5-_pWcwsLa_naQaPg91d0qz96csHbyjTwmQfspZYOvmu_hEUXfAT32rTQG-iXEt5bE-pNr37opPB9xwvZOu3XcOa8bn7pQ7CneO3k0ZDH4Oly9ji9juZ3VzfTYh4JgpmPcCZzpIjkWORYJCEUqkha8YqSJM5wWikWJ6lA6AWL8HAaK8UwY4nMKBGKjMH5xrezZhWmkW-i1lXZ2TCHXZeG63L6NB9-hxT2W_7tN1hMNhbCGuesVFs1RmV_kP-C06End4LXyvJWaLdVUYZyynDATjbYynljt-U4pjFJU_IDVHmX_A</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>Politis, Dimitris N.</creator><creator>Romano, Joseph P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19921201</creationdate><title>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</title><author>Politis, Dimitris N. ; Romano, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18e90f3ea1c91c5555f0d37dad4352817df6257c00b1c0b1172ff61665e843cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>62G05</topic><topic>62M10</topic><topic>bootstrap</topic><topic>Confidence interval</topic><topic>Consistent estimators</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Integers</topic><topic>jackknife</topic><topic>Mathematics</topic><topic>nonparametric estimation</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>resampling methods</topic><topic>Sample mean</topic><topic>Sciences and techniques of general use</topic><topic>spectral density</topic><topic>Spectral energy distribution</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Time series</topic><topic>weak dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Politis, Dimitris N.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Politis, Dimitris N.</au><au>Romano, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation</atitle><jtitle>The Annals of statistics</jtitle><date>1992-12-01</date><risdate>1992</risdate><volume>20</volume><issue>4</issue><spage>1985</spage><epage>2007</epage><pages>1985-2007</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>In 1989 Kunsch introduced a modified bootstrap and jackknife for a statistic which is used to estimate a parameter of the m-dimensional joint distribution of stationary and α-mixing observations. The modification amounts to resampling whole blocks of consecutive observations, or deleting whole blocks one at a time. Liu and Singh independently proposed (in 1988) the same technique for observations that are m-dependent. However, many time-series statistics, notably estimators of the spectral density function, involve parameters of the whole (infinite-dimensional) joint distribution and, hence, do not fit in this framework. In this report we generalize the "moving blocks" resampling scheme of Kunsch and Liu and Singh; a still modified version of the nonparametric bootstrap and jackknife is seen to be valid for general linear statistics that are asymptotically normal and consistent for a parameter of the whole joint distribution. We then apply this result to the problem of estimation of the spectral density.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176348899</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1992-12, Vol.20 (4), p.1985-2007 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348899 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 62G05 62M10 bootstrap Confidence interval Consistent estimators Density estimation Estimators Exact sciences and technology Inference from stochastic processes time series analysis Integers jackknife Mathematics nonparametric estimation Probability and statistics Random variables resampling methods Sample mean Sciences and techniques of general use spectral density Spectral energy distribution Statistical variance Statistics Time series weak dependence |
title | A General Resampling Scheme for Triangular Arrays of α-Mixing Random Variables with Application to the Problem of Spectral Density Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Resampling%20Scheme%20for%20Triangular%20Arrays%20of%20%CE%B1-Mixing%20Random%20Variables%20with%20Application%20to%20the%20Problem%20of%20Spectral%20Density%20Estimation&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Politis,%20Dimitris%20N.&rft.date=1992-12-01&rft.volume=20&rft.issue=4&rft.spage=1985&rft.epage=2007&rft.pages=1985-2007&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176348899&rft_dat=%3Cjstor_proje%3E2242377%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242377&rfr_iscdi=true |