A Log-Linear Model for a Poisson Process Change Point

Many methods have been proposed for modelling nonhomogeneous Poisson processes, including change point models and log-linear models. In this paper, we use likelihood ratio tests to choose which of these models are necessary. Of particular interest is the test for the presence of a change point, for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1992-09, Vol.20 (3), p.1391-1411
1. Verfasser: Loader, Clive R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1411
container_issue 3
container_start_page 1391
container_title The Annals of statistics
container_volume 20
creator Loader, Clive R.
description Many methods have been proposed for modelling nonhomogeneous Poisson processes, including change point models and log-linear models. In this paper, we use likelihood ratio tests to choose which of these models are necessary. Of particular interest is the test for the presence of a change point, for which standard asymptotic theory is not valid. Large deviation methods are applied to approximate the significance level, and power approximations are given. Confidence regions for the change point and other parameters in the model are also derived. A British coal mining accident data set is used to illustrate the methodology.
doi_str_mv 10.1214/aos/1176348774
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242017</jstor_id><sourcerecordid>2242017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-a904e022823b4ffc1dc2d5e0823180aec6fae0e1ec23115f46c69cb3202432c63</originalsourceid><addsrcrecordid>eNplULtOwzAUtRBIlMLKxOCBNe31M8lGFfGSguhA58h1rkuqEFd2GPh7UiUqA9PRPfc8pEPILYMF40wujY9LxlItZJam8ozMONNZkuVan5MZQA6JElpekqsY9wCgcilmRK1o6XdJ2XRoAn3zNbbU-UANXfsmRt_RdfAWY6TFp-l2eKS7_ppcONNGvJlwTjZPjx_FS1K-P78WqzKxQqo-MTlIBM4zLrbSOctqy2uFMNwsA4NWO4OADO1AMOWktjq3W8GBS8GtFnPyMOYegt-j7fHbtk1dHULzZcJP5U1TFZtyYicYZqj-ZhgiFmOEDT7GgO7kZlAdd_tvuJ86TbSmdcF0toknl1TpIGOD7G6U7WPvw-nNueTAUvELeLB1uA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Log-Linear Model for a Poisson Process Change Point</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Loader, Clive R.</creator><creatorcontrib>Loader, Clive R.</creatorcontrib><description>Many methods have been proposed for modelling nonhomogeneous Poisson processes, including change point models and log-linear models. In this paper, we use likelihood ratio tests to choose which of these models are necessary. Of particular interest is the test for the presence of a change point, for which standard asymptotic theory is not valid. Large deviation methods are applied to approximate the significance level, and power approximations are given. Confidence regions for the change point and other parameters in the model are also derived. A British coal mining accident data set is used to illustrate the methodology.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176348774</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G55 ; 62F03 ; 62M99 ; Accidents ; Approximation ; Boundary crossing ; change points ; Coal mining ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; log-linear model ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; non-nested hypothesis ; Parametric models ; Poisson process ; Probability and statistics ; Ratio test ; Sciences and techniques of general use ; Significance level ; Statistics</subject><ispartof>The Annals of statistics, 1992-09, Vol.20 (3), p.1391-1411</ispartof><rights>Copyright 1992 Institute of Mathematical Statistics</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-a904e022823b4ffc1dc2d5e0823180aec6fae0e1ec23115f46c69cb3202432c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242017$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242017$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4578771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Loader, Clive R.</creatorcontrib><title>A Log-Linear Model for a Poisson Process Change Point</title><title>The Annals of statistics</title><description>Many methods have been proposed for modelling nonhomogeneous Poisson processes, including change point models and log-linear models. In this paper, we use likelihood ratio tests to choose which of these models are necessary. Of particular interest is the test for the presence of a change point, for which standard asymptotic theory is not valid. Large deviation methods are applied to approximate the significance level, and power approximations are given. Confidence regions for the change point and other parameters in the model are also derived. A British coal mining accident data set is used to illustrate the methodology.</description><subject>60G55</subject><subject>62F03</subject><subject>62M99</subject><subject>Accidents</subject><subject>Approximation</subject><subject>Boundary crossing</subject><subject>change points</subject><subject>Coal mining</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>log-linear model</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>non-nested hypothesis</subject><subject>Parametric models</subject><subject>Poisson process</subject><subject>Probability and statistics</subject><subject>Ratio test</subject><subject>Sciences and techniques of general use</subject><subject>Significance level</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplULtOwzAUtRBIlMLKxOCBNe31M8lGFfGSguhA58h1rkuqEFd2GPh7UiUqA9PRPfc8pEPILYMF40wujY9LxlItZJam8ozMONNZkuVan5MZQA6JElpekqsY9wCgcilmRK1o6XdJ2XRoAn3zNbbU-UANXfsmRt_RdfAWY6TFp-l2eKS7_ppcONNGvJlwTjZPjx_FS1K-P78WqzKxQqo-MTlIBM4zLrbSOctqy2uFMNwsA4NWO4OADO1AMOWktjq3W8GBS8GtFnPyMOYegt-j7fHbtk1dHULzZcJP5U1TFZtyYicYZqj-ZhgiFmOEDT7GgO7kZlAdd_tvuJ86TbSmdcF0toknl1TpIGOD7G6U7WPvw-nNueTAUvELeLB1uA</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Loader, Clive R.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920901</creationdate><title>A Log-Linear Model for a Poisson Process Change Point</title><author>Loader, Clive R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-a904e022823b4ffc1dc2d5e0823180aec6fae0e1ec23115f46c69cb3202432c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>60G55</topic><topic>62F03</topic><topic>62M99</topic><topic>Accidents</topic><topic>Approximation</topic><topic>Boundary crossing</topic><topic>change points</topic><topic>Coal mining</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>log-linear model</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>non-nested hypothesis</topic><topic>Parametric models</topic><topic>Poisson process</topic><topic>Probability and statistics</topic><topic>Ratio test</topic><topic>Sciences and techniques of general use</topic><topic>Significance level</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loader, Clive R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loader, Clive R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Log-Linear Model for a Poisson Process Change Point</atitle><jtitle>The Annals of statistics</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>20</volume><issue>3</issue><spage>1391</spage><epage>1411</epage><pages>1391-1411</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Many methods have been proposed for modelling nonhomogeneous Poisson processes, including change point models and log-linear models. In this paper, we use likelihood ratio tests to choose which of these models are necessary. Of particular interest is the test for the presence of a change point, for which standard asymptotic theory is not valid. Large deviation methods are applied to approximate the significance level, and power approximations are given. Confidence regions for the change point and other parameters in the model are also derived. A British coal mining accident data set is used to illustrate the methodology.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176348774</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1992-09, Vol.20 (3), p.1391-1411
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348774
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects 60G55
62F03
62M99
Accidents
Approximation
Boundary crossing
change points
Coal mining
Exact sciences and technology
Inference from stochastic processes
time series analysis
log-linear model
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
non-nested hypothesis
Parametric models
Poisson process
Probability and statistics
Ratio test
Sciences and techniques of general use
Significance level
Statistics
title A Log-Linear Model for a Poisson Process Change Point
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Log-Linear%20Model%20for%20a%20Poisson%20Process%20Change%20Point&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Loader,%20Clive%20R.&rft.date=1992-09-01&rft.volume=20&rft.issue=3&rft.spage=1391&rft.epage=1411&rft.pages=1391-1411&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176348774&rft_dat=%3Cjstor_proje%3E2242017%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242017&rfr_iscdi=true