Locally Coherent Rates of Exchange

A theory of coherence is formulated for rates of exchange between events. The theory can be viewed as a generalization of de Finetti's theory of coherence as well as the theory of conditional coherence. Coherent rates of exchange on a fixed Boolean algebra are in one-to-one correspondence with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1989-09, Vol.17 (3), p.1394-1408
Hauptverfasser: Armstrong, Thomas E., Sudderth, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1408
container_issue 3
container_start_page 1394
container_title The Annals of statistics
container_volume 17
creator Armstrong, Thomas E.
Sudderth, William D.
description A theory of coherence is formulated for rates of exchange between events. The theory can be viewed as a generalization of de Finetti's theory of coherence as well as the theory of conditional coherence. Coherent rates of exchange on a fixed Boolean algebra are in one-to-one correspondence with finitely additive conditional probability measures on the algebra. Results of Renyi and Krauss on conditional probability spaces are used to show that coherent rates of exchange are generated by ordered families of finitely additive measures, possibly infinite measures. This provides an interpretation of improper prior distributions in terms of coherence. An extension theorem is proved and gives a generalization of extension theorems for finitely additive probability measures.
doi_str_mv 10.1214/aos/1176347278
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176347278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2241732</jstor_id><sourcerecordid>2241732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4e3d99278e2cb2ead6db4b5e3ee4bbd75f5d92e707c1dc64f331c9b0d015f5843</originalsourceid><addsrcrecordid>eNplUM9LwzAUDqLgnF49eSiCx255SZo0N6XMH1AQxJ1Lmry6jrqMpIL771dZ2Q6ePnjfL75HyC3QGTAQc-PjHEBJLhRT-RmZMJB5mmspz8mEUk3TjEtxSa5iXFNKMy34hNyX3pqu2yWFX2HATZ98mB5j4ptk8WtXZvOF1-SiMV3EmxGnZPm8-Cxe0_L95a14KlPLQfWpQO60HpqR2ZqhcdLVos6QI4q6diprMqcZKqosOCtFwzlYXVNHYaBywafk8ZC7DX6Ntscf27Wu2ob224Rd5U1bFctyvI4wbK5Om4eI2SHCBh9jwOboBlr9Pem_4WHsNHH4QxPMxrbx5NJK5RT4oLs76Nax9-HIMyZAccb3vzNwng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally Coherent Rates of Exchange</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Armstrong, Thomas E. ; Sudderth, William D.</creator><creatorcontrib>Armstrong, Thomas E. ; Sudderth, William D.</creatorcontrib><description>A theory of coherence is formulated for rates of exchange between events. The theory can be viewed as a generalization of de Finetti's theory of coherence as well as the theory of conditional coherence. Coherent rates of exchange on a fixed Boolean algebra are in one-to-one correspondence with finitely additive conditional probability measures on the algebra. Results of Renyi and Krauss on conditional probability spaces are used to show that coherent rates of exchange are generated by ordered families of finitely additive measures, possibly infinite measures. This provides an interpretation of improper prior distributions in terms of coherence. An extension theorem is proved and gives a generalization of extension theorems for finitely additive probability measures.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176347278</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60A05 ; 62A15 ; Algebra ; Bookmaking ; Coherence ; Coherence theory ; Conditional probabilities ; conditional probability ; Exact sciences and technology ; Exchange rates ; finite additivity ; Foreign exchange rates ; General topics ; improper priors ; Lebesgue measures ; Mathematical induction ; Mathematical theorems ; Mathematics ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>The Annals of statistics, 1989-09, Vol.17 (3), p.1394-1408</ispartof><rights>Copyright 1989 Institute of Mathematical Statistics</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4e3d99278e2cb2ead6db4b5e3ee4bbd75f5d92e707c1dc64f331c9b0d015f5843</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2241732$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2241732$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,924,27907,27908,58000,58004,58233,58237</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19778013$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Armstrong, Thomas E.</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><title>Locally Coherent Rates of Exchange</title><title>The Annals of statistics</title><description>A theory of coherence is formulated for rates of exchange between events. The theory can be viewed as a generalization of de Finetti's theory of coherence as well as the theory of conditional coherence. Coherent rates of exchange on a fixed Boolean algebra are in one-to-one correspondence with finitely additive conditional probability measures on the algebra. Results of Renyi and Krauss on conditional probability spaces are used to show that coherent rates of exchange are generated by ordered families of finitely additive measures, possibly infinite measures. This provides an interpretation of improper prior distributions in terms of coherence. An extension theorem is proved and gives a generalization of extension theorems for finitely additive probability measures.</description><subject>60A05</subject><subject>62A15</subject><subject>Algebra</subject><subject>Bookmaking</subject><subject>Coherence</subject><subject>Coherence theory</subject><subject>Conditional probabilities</subject><subject>conditional probability</subject><subject>Exact sciences and technology</subject><subject>Exchange rates</subject><subject>finite additivity</subject><subject>Foreign exchange rates</subject><subject>General topics</subject><subject>improper priors</subject><subject>Lebesgue measures</subject><subject>Mathematical induction</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNplUM9LwzAUDqLgnF49eSiCx255SZo0N6XMH1AQxJ1Lmry6jrqMpIL771dZ2Q6ePnjfL75HyC3QGTAQc-PjHEBJLhRT-RmZMJB5mmspz8mEUk3TjEtxSa5iXFNKMy34hNyX3pqu2yWFX2HATZ98mB5j4ptk8WtXZvOF1-SiMV3EmxGnZPm8-Cxe0_L95a14KlPLQfWpQO60HpqR2ZqhcdLVos6QI4q6diprMqcZKqosOCtFwzlYXVNHYaBywafk8ZC7DX6Ntscf27Wu2ob224Rd5U1bFctyvI4wbK5Om4eI2SHCBh9jwOboBlr9Pem_4WHsNHH4QxPMxrbx5NJK5RT4oLs76Nax9-HIMyZAccb3vzNwng</recordid><startdate>19890901</startdate><enddate>19890901</enddate><creator>Armstrong, Thomas E.</creator><creator>Sudderth, William D.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19890901</creationdate><title>Locally Coherent Rates of Exchange</title><author>Armstrong, Thomas E. ; Sudderth, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4e3d99278e2cb2ead6db4b5e3ee4bbd75f5d92e707c1dc64f331c9b0d015f5843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>60A05</topic><topic>62A15</topic><topic>Algebra</topic><topic>Bookmaking</topic><topic>Coherence</topic><topic>Coherence theory</topic><topic>Conditional probabilities</topic><topic>conditional probability</topic><topic>Exact sciences and technology</topic><topic>Exchange rates</topic><topic>finite additivity</topic><topic>Foreign exchange rates</topic><topic>General topics</topic><topic>improper priors</topic><topic>Lebesgue measures</topic><topic>Mathematical induction</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, Thomas E.</creatorcontrib><creatorcontrib>Sudderth, William D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armstrong, Thomas E.</au><au>Sudderth, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Coherent Rates of Exchange</atitle><jtitle>The Annals of statistics</jtitle><date>1989-09-01</date><risdate>1989</risdate><volume>17</volume><issue>3</issue><spage>1394</spage><epage>1408</epage><pages>1394-1408</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>A theory of coherence is formulated for rates of exchange between events. The theory can be viewed as a generalization of de Finetti's theory of coherence as well as the theory of conditional coherence. Coherent rates of exchange on a fixed Boolean algebra are in one-to-one correspondence with finitely additive conditional probability measures on the algebra. Results of Renyi and Krauss on conditional probability spaces are used to show that coherent rates of exchange are generated by ordered families of finitely additive measures, possibly infinite measures. This provides an interpretation of improper prior distributions in terms of coherence. An extension theorem is proved and gives a generalization of extension theorems for finitely additive probability measures.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176347278</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1989-09, Vol.17 (3), p.1394-1408
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176347278
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60A05
62A15
Algebra
Bookmaking
Coherence
Coherence theory
Conditional probabilities
conditional probability
Exact sciences and technology
Exchange rates
finite additivity
Foreign exchange rates
General topics
improper priors
Lebesgue measures
Mathematical induction
Mathematical theorems
Mathematics
Probability and statistics
Sciences and techniques of general use
Statistics
title Locally Coherent Rates of Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Coherent%20Rates%20of%20Exchange&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Armstrong,%20Thomas%20E.&rft.date=1989-09-01&rft.volume=17&rft.issue=3&rft.spage=1394&rft.epage=1408&rft.pages=1394-1408&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176347278&rft_dat=%3Cjstor_proje%3E2241732%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2241732&rfr_iscdi=true