A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies

A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1984-09, Vol.12 (3), p.816-826
Hauptverfasser: Moolgavkar, Suresh H., Lustbader, Edward D., Venzon, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 3
container_start_page 816
container_title The Annals of statistics
container_volume 12
creator Moolgavkar, Suresh H.
Lustbader, Edward D.
Venzon, David J.
description A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.
doi_str_mv 10.1214/aos/1176346704
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176346704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2240962</jstor_id><sourcerecordid>2240962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKtXTx7yBdbm32Y3N8uqVSgKas9LNnnbpmw3JUkRv71bWurB08B78xuYQeiWknvKqJhoHyeUFpILWRBxhkaMyjIrlZTnaESIIlnOpbhEVzGuCSG5EnyE1lM8A7-BFJzB0-02eG1WOHn85vvO9aAD_oBlgBid7_Gj08vex-RMxN8urfZE54xOwzPuqY1OZgUWVzpCVvk-Bd_hz7SzDuI1umh1F-HmqGO0eH76ql6y-fvstZrOM8MIE1lhrLRUCqsFLQnTpS6UUrKUuWo551QWjW04aa0tQWklbdkaAKWavB2KN4KP0cMhdyizBpNgZzpn621wGx1-aq9dXS3mx-tRhu3qv-2GiPtDhAk-xgDtiaak3o_9H7g7AOuYfDi5GRNEScZ_AbQ1fjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</creator><creatorcontrib>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</creatorcontrib><description>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176346704</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62F99 ; 62P10 ; Approximation ; Case control studies ; Covariance matrices ; diagnostics ; hat matrix ; influential observations ; Inner products ; Least squares ; Linear regression ; logistic regression ; Mathematical vectors ; Matrices ; Maximum likelihood estimation ; Maximum likelihood estimators</subject><ispartof>The Annals of statistics, 1984-09, Vol.12 (3), p.816-826</ispartof><rights>Copyright 1984 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2240962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2240962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27915,27916,58008,58012,58241,58245</link.rule.ids></links><search><creatorcontrib>Moolgavkar, Suresh H.</creatorcontrib><creatorcontrib>Lustbader, Edward D.</creatorcontrib><creatorcontrib>Venzon, David J.</creatorcontrib><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><title>The Annals of statistics</title><description>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</description><subject>62F99</subject><subject>62P10</subject><subject>Approximation</subject><subject>Case control studies</subject><subject>Covariance matrices</subject><subject>diagnostics</subject><subject>hat matrix</subject><subject>influential observations</subject><subject>Inner products</subject><subject>Least squares</subject><subject>Linear regression</subject><subject>logistic regression</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKtXTx7yBdbm32Y3N8uqVSgKas9LNnnbpmw3JUkRv71bWurB08B78xuYQeiWknvKqJhoHyeUFpILWRBxhkaMyjIrlZTnaESIIlnOpbhEVzGuCSG5EnyE1lM8A7-BFJzB0-02eG1WOHn85vvO9aAD_oBlgBid7_Gj08vex-RMxN8urfZE54xOwzPuqY1OZgUWVzpCVvk-Bd_hz7SzDuI1umh1F-HmqGO0eH76ql6y-fvstZrOM8MIE1lhrLRUCqsFLQnTpS6UUrKUuWo551QWjW04aa0tQWklbdkaAKWavB2KN4KP0cMhdyizBpNgZzpn621wGx1-aq9dXS3mx-tRhu3qv-2GiPtDhAk-xgDtiaak3o_9H7g7AOuYfDi5GRNEScZ_AbQ1fjg</recordid><startdate>19840901</startdate><enddate>19840901</enddate><creator>Moolgavkar, Suresh H.</creator><creator>Lustbader, Edward D.</creator><creator>Venzon, David J.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19840901</creationdate><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><author>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>62F99</topic><topic>62P10</topic><topic>Approximation</topic><topic>Case control studies</topic><topic>Covariance matrices</topic><topic>diagnostics</topic><topic>hat matrix</topic><topic>influential observations</topic><topic>Inner products</topic><topic>Least squares</topic><topic>Linear regression</topic><topic>logistic regression</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moolgavkar, Suresh H.</creatorcontrib><creatorcontrib>Lustbader, Edward D.</creatorcontrib><creatorcontrib>Venzon, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moolgavkar, Suresh H.</au><au>Lustbader, Edward D.</au><au>Venzon, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</atitle><jtitle>The Annals of statistics</jtitle><date>1984-09-01</date><risdate>1984</risdate><volume>12</volume><issue>3</issue><spage>816</spage><epage>826</epage><pages>816-826</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176346704</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1984-09, Vol.12 (3), p.816-826
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176346704
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects 62F99
62P10
Approximation
Case control studies
Covariance matrices
diagnostics
hat matrix
influential observations
Inner products
Least squares
Linear regression
logistic regression
Mathematical vectors
Matrices
Maximum likelihood estimation
Maximum likelihood estimators
title A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometric%20Approach%20to%20Nonlinear%20Regression%20Diagnostics%20with%20Applications%20to%20matched%20Case-Control%20Studies&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Moolgavkar,%20Suresh%20H.&rft.date=1984-09-01&rft.volume=12&rft.issue=3&rft.spage=816&rft.epage=826&rft.pages=816-826&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176346704&rft_dat=%3Cjstor_proje%3E2240962%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2240962&rfr_iscdi=true