A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies
A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1984-09, Vol.12 (3), p.816-826 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 826 |
---|---|
container_issue | 3 |
container_start_page | 816 |
container_title | The Annals of statistics |
container_volume | 12 |
creator | Moolgavkar, Suresh H. Lustbader, Edward D. Venzon, David J. |
description | A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed. |
doi_str_mv | 10.1214/aos/1176346704 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176346704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2240962</jstor_id><sourcerecordid>2240962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKtXTx7yBdbm32Y3N8uqVSgKas9LNnnbpmw3JUkRv71bWurB08B78xuYQeiWknvKqJhoHyeUFpILWRBxhkaMyjIrlZTnaESIIlnOpbhEVzGuCSG5EnyE1lM8A7-BFJzB0-02eG1WOHn85vvO9aAD_oBlgBid7_Gj08vex-RMxN8urfZE54xOwzPuqY1OZgUWVzpCVvk-Bd_hz7SzDuI1umh1F-HmqGO0eH76ql6y-fvstZrOM8MIE1lhrLRUCqsFLQnTpS6UUrKUuWo551QWjW04aa0tQWklbdkaAKWavB2KN4KP0cMhdyizBpNgZzpn621wGx1-aq9dXS3mx-tRhu3qv-2GiPtDhAk-xgDtiaak3o_9H7g7AOuYfDi5GRNEScZ_AbQ1fjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</creator><creatorcontrib>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</creatorcontrib><description>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176346704</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62F99 ; 62P10 ; Approximation ; Case control studies ; Covariance matrices ; diagnostics ; hat matrix ; influential observations ; Inner products ; Least squares ; Linear regression ; logistic regression ; Mathematical vectors ; Matrices ; Maximum likelihood estimation ; Maximum likelihood estimators</subject><ispartof>The Annals of statistics, 1984-09, Vol.12 (3), p.816-826</ispartof><rights>Copyright 1984 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2240962$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2240962$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27915,27916,58008,58012,58241,58245</link.rule.ids></links><search><creatorcontrib>Moolgavkar, Suresh H.</creatorcontrib><creatorcontrib>Lustbader, Edward D.</creatorcontrib><creatorcontrib>Venzon, David J.</creatorcontrib><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><title>The Annals of statistics</title><description>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</description><subject>62F99</subject><subject>62P10</subject><subject>Approximation</subject><subject>Case control studies</subject><subject>Covariance matrices</subject><subject>diagnostics</subject><subject>hat matrix</subject><subject>influential observations</subject><subject>Inner products</subject><subject>Least squares</subject><subject>Linear regression</subject><subject>logistic regression</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKtXTx7yBdbm32Y3N8uqVSgKas9LNnnbpmw3JUkRv71bWurB08B78xuYQeiWknvKqJhoHyeUFpILWRBxhkaMyjIrlZTnaESIIlnOpbhEVzGuCSG5EnyE1lM8A7-BFJzB0-02eG1WOHn85vvO9aAD_oBlgBid7_Gj08vex-RMxN8urfZE54xOwzPuqY1OZgUWVzpCVvk-Bd_hz7SzDuI1umh1F-HmqGO0eH76ql6y-fvstZrOM8MIE1lhrLRUCqsFLQnTpS6UUrKUuWo551QWjW04aa0tQWklbdkaAKWavB2KN4KP0cMhdyizBpNgZzpn621wGx1-aq9dXS3mx-tRhu3qv-2GiPtDhAk-xgDtiaak3o_9H7g7AOuYfDi5GRNEScZ_AbQ1fjg</recordid><startdate>19840901</startdate><enddate>19840901</enddate><creator>Moolgavkar, Suresh H.</creator><creator>Lustbader, Edward D.</creator><creator>Venzon, David J.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19840901</creationdate><title>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</title><author>Moolgavkar, Suresh H. ; Lustbader, Edward D. ; Venzon, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2024-7cd6d164da41802a8a799968659f333167bdb30fdd8e9a96d8fcee99b5f467b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>62F99</topic><topic>62P10</topic><topic>Approximation</topic><topic>Case control studies</topic><topic>Covariance matrices</topic><topic>diagnostics</topic><topic>hat matrix</topic><topic>influential observations</topic><topic>Inner products</topic><topic>Least squares</topic><topic>Linear regression</topic><topic>logistic regression</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moolgavkar, Suresh H.</creatorcontrib><creatorcontrib>Lustbader, Edward D.</creatorcontrib><creatorcontrib>Venzon, David J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moolgavkar, Suresh H.</au><au>Lustbader, Edward D.</au><au>Venzon, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies</atitle><jtitle>The Annals of statistics</jtitle><date>1984-09-01</date><risdate>1984</risdate><volume>12</volume><issue>3</issue><spage>816</spage><epage>826</epage><pages>816-826</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>A geometric approach is described for the detection of influential points in nonlinear regression. This work extends and gives geometric interpretation to recent results in logistic regression diagnostics. An application of this approach to matched case-control studies is discussed.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176346704</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1984-09, Vol.12 (3), p.816-826 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176346704 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
subjects | 62F99 62P10 Approximation Case control studies Covariance matrices diagnostics hat matrix influential observations Inner products Least squares Linear regression logistic regression Mathematical vectors Matrices Maximum likelihood estimation Maximum likelihood estimators |
title | A Geometric Approach to Nonlinear Regression Diagnostics with Applications to matched Case-Control Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometric%20Approach%20to%20Nonlinear%20Regression%20Diagnostics%20with%20Applications%20to%20matched%20Case-Control%20Studies&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Moolgavkar,%20Suresh%20H.&rft.date=1984-09-01&rft.volume=12&rft.issue=3&rft.spage=816&rft.epage=826&rft.pages=816-826&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176346704&rft_dat=%3Cjstor_proje%3E2240962%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2240962&rfr_iscdi=true |