Estimability in Partitioned Linear Models

Some estimability facts for partitioned linear models with constraints are presented. For a model E(Y) = X1π1+ X2π2with constraints on π1and π2a reduced model is derived that contains all information regarding the estimability (and also regarding the blues) of parametric functions b'π2. For a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1980-03, Vol.8 (2), p.399-406
Hauptverfasser: Seely, Justus, Birkes, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 2
container_start_page 399
container_title The Annals of statistics
container_volume 8
creator Seely, Justus
Birkes, David
description Some estimability facts for partitioned linear models with constraints are presented. For a model E(Y) = X1π1+ X2π2with constraints on π1and π2a reduced model is derived that contains all information regarding the estimability (and also regarding the blues) of parametric functions b'π2. For a model E(Y) = X0π0+ X1π1+ X2π2with constraints on π0, π1and π2, several necessary and sufficient conditions are given for when estimability of b'π2in the original model is equivalent to estimability in the simpler model E(Y) = X0π0+ X2π2.
doi_str_mv 10.1214/aos/1176344960
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176344960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2240542</jstor_id><sourcerecordid>2240542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7e8306e2b60afa9e7819fb27b034f0f1490a13bfb081990b34156f513b7827e33</originalsourceid><addsrcrecordid>eNplkL1PwzAQxS0EEqGwMjFkZUh7_ogdb6CofEhBMNA5shNbchTiyjZD_3uCGpWB6Unv7vd07xC6xbDGBLON8nGDseCUMcnhDGUE86qoJOfnKAOQUJSUs0t0FeMAAKVkNEP325jcl9JudOmQuyn_UCG55Pxk-rxxk1Ehf_O9GeM1urBqjOZm0RXaPW0_65eieX9-rR-boiOVSIUwFQVuiOagrJJGVFhaTYQGyixYzCQoTLXVMA8kaMpwyW05W6IiwlC6Qg_H3H3wg-mS-e5G17f7MJ8ZDq1Xrq13zeIuMldv_6rPEetjRBd8jMHYE42h_f3Vf-DuCAwx-XDaJoRByQj9AbGoZV8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimability in Partitioned Linear Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Seely, Justus ; Birkes, David</creator><creatorcontrib>Seely, Justus ; Birkes, David</creatorcontrib><description>Some estimability facts for partitioned linear models with constraints are presented. For a model E(Y) = X1π1+ X2π2with constraints on π1and π2a reduced model is derived that contains all information regarding the estimability (and also regarding the blues) of parametric functions b'π2. For a model E(Y) = X0π0+ X1π1+ X2π2with constraints on π0, π1and π2, several necessary and sufficient conditions are given for when estimability of b'π2in the original model is equivalent to estimability in the simpler model E(Y) = X0π0+ X2π2.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176344960</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>62J99 ; 62K99 ; Covariance ; Degrees of freedom ; estimable linear parametric functions ; Estimators ; Linear models ; Mathematical vectors ; Matrices ; Parametric models ; Partitioned linear model ; Regression analysis ; Vector space models ; Vector spaces</subject><ispartof>The Annals of statistics, 1980-03, Vol.8 (2), p.399-406</ispartof><rights>Copyright 1980 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-7e8306e2b60afa9e7819fb27b034f0f1490a13bfb081990b34156f513b7827e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2240542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2240542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,801,830,883,924,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>Seely, Justus</creatorcontrib><creatorcontrib>Birkes, David</creatorcontrib><title>Estimability in Partitioned Linear Models</title><title>The Annals of statistics</title><description>Some estimability facts for partitioned linear models with constraints are presented. For a model E(Y) = X1π1+ X2π2with constraints on π1and π2a reduced model is derived that contains all information regarding the estimability (and also regarding the blues) of parametric functions b'π2. For a model E(Y) = X0π0+ X1π1+ X2π2with constraints on π0, π1and π2, several necessary and sufficient conditions are given for when estimability of b'π2in the original model is equivalent to estimability in the simpler model E(Y) = X0π0+ X2π2.</description><subject>62J99</subject><subject>62K99</subject><subject>Covariance</subject><subject>Degrees of freedom</subject><subject>estimable linear parametric functions</subject><subject>Estimators</subject><subject>Linear models</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Parametric models</subject><subject>Partitioned linear model</subject><subject>Regression analysis</subject><subject>Vector space models</subject><subject>Vector spaces</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNplkL1PwzAQxS0EEqGwMjFkZUh7_ogdb6CofEhBMNA5shNbchTiyjZD_3uCGpWB6Unv7vd07xC6xbDGBLON8nGDseCUMcnhDGUE86qoJOfnKAOQUJSUs0t0FeMAAKVkNEP325jcl9JudOmQuyn_UCG55Pxk-rxxk1Ehf_O9GeM1urBqjOZm0RXaPW0_65eieX9-rR-boiOVSIUwFQVuiOagrJJGVFhaTYQGyixYzCQoTLXVMA8kaMpwyW05W6IiwlC6Qg_H3H3wg-mS-e5G17f7MJ8ZDq1Xrq13zeIuMldv_6rPEetjRBd8jMHYE42h_f3Vf-DuCAwx-XDaJoRByQj9AbGoZV8</recordid><startdate>19800301</startdate><enddate>19800301</enddate><creator>Seely, Justus</creator><creator>Birkes, David</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19800301</creationdate><title>Estimability in Partitioned Linear Models</title><author>Seely, Justus ; Birkes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7e8306e2b60afa9e7819fb27b034f0f1490a13bfb081990b34156f513b7827e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>62J99</topic><topic>62K99</topic><topic>Covariance</topic><topic>Degrees of freedom</topic><topic>estimable linear parametric functions</topic><topic>Estimators</topic><topic>Linear models</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Parametric models</topic><topic>Partitioned linear model</topic><topic>Regression analysis</topic><topic>Vector space models</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seely, Justus</creatorcontrib><creatorcontrib>Birkes, David</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seely, Justus</au><au>Birkes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimability in Partitioned Linear Models</atitle><jtitle>The Annals of statistics</jtitle><date>1980-03-01</date><risdate>1980</risdate><volume>8</volume><issue>2</issue><spage>399</spage><epage>406</epage><pages>399-406</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>Some estimability facts for partitioned linear models with constraints are presented. For a model E(Y) = X1π1+ X2π2with constraints on π1and π2a reduced model is derived that contains all information regarding the estimability (and also regarding the blues) of parametric functions b'π2. For a model E(Y) = X0π0+ X1π1+ X2π2with constraints on π0, π1and π2, several necessary and sufficient conditions are given for when estimability of b'π2in the original model is equivalent to estimability in the simpler model E(Y) = X0π0+ X2π2.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176344960</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1980-03, Vol.8 (2), p.399-406
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176344960
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects 62J99
62K99
Covariance
Degrees of freedom
estimable linear parametric functions
Estimators
Linear models
Mathematical vectors
Matrices
Parametric models
Partitioned linear model
Regression analysis
Vector space models
Vector spaces
title Estimability in Partitioned Linear Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimability%20in%20Partitioned%20Linear%20Models&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Seely,%20Justus&rft.date=1980-03-01&rft.volume=8&rft.issue=2&rft.spage=399&rft.epage=406&rft.pages=399-406&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/aos/1176344960&rft_dat=%3Cjstor_proje%3E2240542%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2240542&rfr_iscdi=true