Maximal Inequalities for Degenerate U-Processes with Applications to Optimization Estimators

Maximal inequalities for degenerate U-processes of order k, k ≥ 1, are established. The results rest on a moment inequality (due to Bonami) for kth-order forms and on extensions of chaining and symmetrization inequalities from the theory of empirical processes. Rates of uniform convergence are obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1994-03, Vol.22 (1), p.439-459
1. Verfasser: Sherman, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximal inequalities for degenerate U-processes of order k, k ≥ 1, are established. The results rest on a moment inequality (due to Bonami) for kth-order forms and on extensions of chaining and symmetrization inequalities from the theory of empirical processes. Rates of uniform convergence are obtained. The maximal inequalities can be used to determine the limiting distribution of estimators that optimize criterion functions having U-process structure. As an application, a semiparametric regression estimator that maximizes a U-process of order 3 is shown to be$\sqrt n$-consistent and asymptotically normally distributed.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176325377