Generalizations of the Familywise Error Rate

Consider the problem of simultaneously testing null hypotheses H1,..., Hs. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2005-06, Vol.33 (3), p.1138-1154
Hauptverfasser: Lehmann, E. L., Romano, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1154
container_issue 3
container_start_page 1138
container_title The Annals of statistics
container_volume 33
creator Lehmann, E. L.
Romano, Joseph P.
description Consider the problem of simultaneously testing null hypotheses H1,..., Hs. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of the procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of k or more false rejections, which we call the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER, without making any assumptions concerning the dependence structure of the p-values of the individual tests. In particular, we derive a stepdown procedure that is quite simple to apply, and prove that it cannot be improved without violation of control of the k-FWER. We also consider the false discovery proportion (FDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] controls E(FDP). Here, we construct methods such that, for any γ and α, $P{FDP>\gamma}\leq\alpha$. Two stepdown methods are proposed. The first holds under mild conditions on the dependence structure of p-values, while the second is more conservative but holds without any dependence assumptions.
doi_str_mv 10.1214/009053605000000084
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1120224098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3448684</jstor_id><sourcerecordid>3448684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-7e2f988f83511ee80c6525f18e9a98117450171707264a1c6856d88e86b6c3393</originalsourceid><addsrcrecordid>eNplkFFLwzAQgIMoOKd_QHwogm9Wc2mSJm_K2KYwEMQ9h5ilmNI1M-mQ7deb0TIfvJeDu---Ow6ha8APQIA-YiwxKzhmuA9BT9CIABe5kJyfotEByBNBz9FFjHVCmKTFCN3PbWuDbtxed863MfNV1n3ZbKbXrtn9uGizaQg-ZO-6s5forNJNtFdDHqPlbPoxeckXb_PXyfMiN1SSLi8tqaQQlSgYgLUCG84Iq0BYqaUAKCnDUEKJS8KpBsMF4yshrOCf3BSFLMboqfdugq-t6ezWNG6lNsGtddgpr52aLBdDdUjaRwVAMCEUS5EUt0fF99bGTtV-G9p0tQLJJUmn8QSRHjLBxxhsdVwBWB3-qv7_NQ3dDWYdjW6qoFvj4t8klxySP3E3PVfHzodjv6BU8KT5BZ6Sfd8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196923516</pqid></control><display><type>article</type><title>Generalizations of the Familywise Error Rate</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Lehmann, E. L. ; Romano, Joseph P.</creator><creatorcontrib>Lehmann, E. L. ; Romano, Joseph P.</creatorcontrib><description>Consider the problem of simultaneously testing null hypotheses H1,..., Hs. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of the procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of k or more false rejections, which we call the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER, without making any assumptions concerning the dependence structure of the p-values of the individual tests. In particular, we derive a stepdown procedure that is quite simple to apply, and prove that it cannot be improved without violation of control of the k-FWER. We also consider the false discovery proportion (FDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] controls E(FDP). Here, we construct methods such that, for any γ and α, $P{FDP&gt;\gamma}\leq\alpha$. Two stepdown methods are proposed. The first holds under mild conditions on the dependence structure of p-values, while the second is more conservative but holds without any dependence assumptions.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053605000000084</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G10 ; 62J15 ; Error rates ; Exact sciences and technology ; Familywise error rate ; Hypotheses ; Hypothesis testing ; Logical givens ; Mathematical procedures ; Mathematics ; multiple testing ; Multivariate analysis ; Nonparametric inference ; Null hypothesis ; P values ; p-value ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; stepdown procedure ; Studies ; Testing Methodology</subject><ispartof>The Annals of statistics, 2005-06, Vol.33 (3), p.1138-1154</ispartof><rights>Copyright 2005 Institute of Mathematical Statistics</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Jun 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-7e2f988f83511ee80c6525f18e9a98117450171707264a1c6856d88e86b6c3393</citedby><cites>FETCH-LOGICAL-c492t-7e2f988f83511ee80c6525f18e9a98117450171707264a1c6856d88e86b6c3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3448684$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3448684$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16961923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, E. L.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><title>Generalizations of the Familywise Error Rate</title><title>The Annals of statistics</title><description>Consider the problem of simultaneously testing null hypotheses H1,..., Hs. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of the procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of k or more false rejections, which we call the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER, without making any assumptions concerning the dependence structure of the p-values of the individual tests. In particular, we derive a stepdown procedure that is quite simple to apply, and prove that it cannot be improved without violation of control of the k-FWER. We also consider the false discovery proportion (FDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] controls E(FDP). Here, we construct methods such that, for any γ and α, $P{FDP&gt;\gamma}\leq\alpha$. Two stepdown methods are proposed. The first holds under mild conditions on the dependence structure of p-values, while the second is more conservative but holds without any dependence assumptions.</description><subject>62G10</subject><subject>62J15</subject><subject>Error rates</subject><subject>Exact sciences and technology</subject><subject>Familywise error rate</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Logical givens</subject><subject>Mathematical procedures</subject><subject>Mathematics</subject><subject>multiple testing</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Null hypothesis</subject><subject>P values</subject><subject>p-value</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>stepdown procedure</subject><subject>Studies</subject><subject>Testing Methodology</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNplkFFLwzAQgIMoOKd_QHwogm9Wc2mSJm_K2KYwEMQ9h5ilmNI1M-mQ7deb0TIfvJeDu---Ow6ha8APQIA-YiwxKzhmuA9BT9CIABe5kJyfotEByBNBz9FFjHVCmKTFCN3PbWuDbtxed863MfNV1n3ZbKbXrtn9uGizaQg-ZO-6s5forNJNtFdDHqPlbPoxeckXb_PXyfMiN1SSLi8tqaQQlSgYgLUCG84Iq0BYqaUAKCnDUEKJS8KpBsMF4yshrOCf3BSFLMboqfdugq-t6ezWNG6lNsGtddgpr52aLBdDdUjaRwVAMCEUS5EUt0fF99bGTtV-G9p0tQLJJUmn8QSRHjLBxxhsdVwBWB3-qv7_NQ3dDWYdjW6qoFvj4t8klxySP3E3PVfHzodjv6BU8KT5BZ6Sfd8</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Lehmann, E. L.</creator><creator>Romano, Joseph P.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050601</creationdate><title>Generalizations of the Familywise Error Rate</title><author>Lehmann, E. L. ; Romano, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-7e2f988f83511ee80c6525f18e9a98117450171707264a1c6856d88e86b6c3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>62G10</topic><topic>62J15</topic><topic>Error rates</topic><topic>Exact sciences and technology</topic><topic>Familywise error rate</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Logical givens</topic><topic>Mathematical procedures</topic><topic>Mathematics</topic><topic>multiple testing</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Null hypothesis</topic><topic>P values</topic><topic>p-value</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>stepdown procedure</topic><topic>Studies</topic><topic>Testing Methodology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, E. L.</creatorcontrib><creatorcontrib>Romano, Joseph P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehmann, E. L.</au><au>Romano, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizations of the Familywise Error Rate</atitle><jtitle>The Annals of statistics</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>33</volume><issue>3</issue><spage>1138</spage><epage>1154</epage><pages>1138-1154</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Consider the problem of simultaneously testing null hypotheses H1,..., Hs. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of the procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of k or more false rejections, which we call the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER, without making any assumptions concerning the dependence structure of the p-values of the individual tests. In particular, we derive a stepdown procedure that is quite simple to apply, and prove that it cannot be improved without violation of control of the k-FWER. We also consider the false discovery proportion (FDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] controls E(FDP). Here, we construct methods such that, for any γ and α, $P{FDP&gt;\gamma}\leq\alpha$. Two stepdown methods are proposed. The first holds under mild conditions on the dependence structure of p-values, while the second is more conservative but holds without any dependence assumptions.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053605000000084</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2005-06, Vol.33 (3), p.1138-1154
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1120224098
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62G10
62J15
Error rates
Exact sciences and technology
Familywise error rate
Hypotheses
Hypothesis testing
Logical givens
Mathematical procedures
Mathematics
multiple testing
Multivariate analysis
Nonparametric inference
Null hypothesis
P values
p-value
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
stepdown procedure
Studies
Testing Methodology
title Generalizations of the Familywise Error Rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizations%20of%20the%20Familywise%20Error%20Rate&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Lehmann,%20E.%20L.&rft.date=2005-06-01&rft.volume=33&rft.issue=3&rft.spage=1138&rft.epage=1154&rft.pages=1138-1154&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053605000000084&rft_dat=%3Cjstor_proje%3E3448684%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196923516&rft_id=info:pmid/&rft_jstor_id=3448684&rfr_iscdi=true