A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis

The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1996-10, Vol.24 (5), p.1934-1963
Hauptverfasser: Dahlhaus, R., Janas, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue 5
container_start_page 1934
container_title The Annals of statistics
container_volume 24
creator Dahlhaus, R.
Janas, D.
description The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation even outperforms the normal approximation. The results carry over to Whittle estimates. In a simulation study the behavior of the bootstrap is studied for empirical correlations and Whittle estimates.
doi_str_mv 10.1214/aos/1069362304
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1069362304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242635</jstor_id><sourcerecordid>2242635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-954dbac69d406ac4ccc88dee5f874a5bcdc54db6ad94a1f6c6ef0371200cbdfe3</originalsourceid><addsrcrecordid>eNplkDFvwjAUhK2qlUpp104dPHQN2LFjkq0USouEVKnAHD1ebMkoxNQ2A_--QUQwdDrp3nf3pCPkmbMBT7kcggtDzlQhVCqYvCG9lKs8yQulbkmPsYIlmVDynjyEsGWMZYUUPTIf05nXvwfd4JFO3Q5sQ9-diyF62FPjPP2BaB1dxlZCtBhoS6zsTtOl9lYHOm6gPgYbHsmdgTrop077ZD37WE2-ksX353wyXiQochmTIpPVBlAVlWQKUCJinldaZyYfScg2WOGJUFAVErhRqLRhYsRTxnBTGS365O3cu_duqzHqA9a2Kvfe7sAfSwe2nKwXndtJO015naatGJwr0LsQvDaXNGflacv_gdfuJwSE2nho0IZLKlWCC5a12MsZ24bo_PWcypbIxB8jK3-f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Dahlhaus, R. ; Janas, D.</creator><creatorcontrib>Dahlhaus, R. ; Janas, D.</creatorcontrib><description>The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation even outperforms the normal approximation. The results carry over to Whittle estimates. In a simulation study the behavior of the bootstrap is studied for empirical correlations and Whittle estimates.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1069362304</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62E20 ; 62M10 ; Approximation ; Approximations and expansions ; Autocorrelation ; Autocorrelations ; bootstrap ; Bootstrap resampling ; Density estimation ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Mathematical analysis ; Mathematical foundations ; Mathematics ; periodogram ordinates ; Probability and statistics ; ratio statistics ; Sciences and techniques of general use ; Spectral energy distribution ; spectral mean ; Statistical theories ; Statistical variance ; Statistics ; Time series ; Time series analysis ; Whittle estimators</subject><ispartof>The Annals of statistics, 1996-10, Vol.24 (5), p.1934-1963</ispartof><rights>Copyright 1996 Institute of Mathematical Statistics</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-954dbac69d406ac4ccc88dee5f874a5bcdc54db6ad94a1f6c6ef0371200cbdfe3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242635$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242635$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2631305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dahlhaus, R.</creatorcontrib><creatorcontrib>Janas, D.</creatorcontrib><title>A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis</title><title>The Annals of statistics</title><description>The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation even outperforms the normal approximation. The results carry over to Whittle estimates. In a simulation study the behavior of the bootstrap is studied for empirical correlations and Whittle estimates.</description><subject>62E20</subject><subject>62M10</subject><subject>Approximation</subject><subject>Approximations and expansions</subject><subject>Autocorrelation</subject><subject>Autocorrelations</subject><subject>bootstrap</subject><subject>Bootstrap resampling</subject><subject>Density estimation</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>periodogram ordinates</subject><subject>Probability and statistics</subject><subject>ratio statistics</subject><subject>Sciences and techniques of general use</subject><subject>Spectral energy distribution</subject><subject>spectral mean</subject><subject>Statistical theories</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Whittle estimators</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNplkDFvwjAUhK2qlUpp104dPHQN2LFjkq0USouEVKnAHD1ebMkoxNQ2A_--QUQwdDrp3nf3pCPkmbMBT7kcggtDzlQhVCqYvCG9lKs8yQulbkmPsYIlmVDynjyEsGWMZYUUPTIf05nXvwfd4JFO3Q5sQ9-diyF62FPjPP2BaB1dxlZCtBhoS6zsTtOl9lYHOm6gPgYbHsmdgTrop077ZD37WE2-ksX353wyXiQochmTIpPVBlAVlWQKUCJinldaZyYfScg2WOGJUFAVErhRqLRhYsRTxnBTGS365O3cu_duqzHqA9a2Kvfe7sAfSwe2nKwXndtJO015naatGJwr0LsQvDaXNGflacv_gdfuJwSE2nho0IZLKlWCC5a12MsZ24bo_PWcypbIxB8jK3-f</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Dahlhaus, R.</creator><creator>Janas, D.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19961001</creationdate><title>A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis</title><author>Dahlhaus, R. ; Janas, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-954dbac69d406ac4ccc88dee5f874a5bcdc54db6ad94a1f6c6ef0371200cbdfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>62E20</topic><topic>62M10</topic><topic>Approximation</topic><topic>Approximations and expansions</topic><topic>Autocorrelation</topic><topic>Autocorrelations</topic><topic>bootstrap</topic><topic>Bootstrap resampling</topic><topic>Density estimation</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>periodogram ordinates</topic><topic>Probability and statistics</topic><topic>ratio statistics</topic><topic>Sciences and techniques of general use</topic><topic>Spectral energy distribution</topic><topic>spectral mean</topic><topic>Statistical theories</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Whittle estimators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahlhaus, R.</creatorcontrib><creatorcontrib>Janas, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahlhaus, R.</au><au>Janas, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis</atitle><jtitle>The Annals of statistics</jtitle><date>1996-10-01</date><risdate>1996</risdate><volume>24</volume><issue>5</issue><spage>1934</spage><epage>1963</epage><pages>1934-1963</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>The asymptotic properties of the bootstrap in the frequency domain based on Studentized periodogram ordinates are studied. It is proved that this bootstrap approximation is valid for ratio statistics such as autocorrelations. By using Edgeworth expansions it is shown that the bootstrap approximation even outperforms the normal approximation. The results carry over to Whittle estimates. In a simulation study the behavior of the bootstrap is studied for empirical correlations and Whittle estimates.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1069362304</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1996-10, Vol.24 (5), p.1934-1963
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1069362304
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62E20
62M10
Approximation
Approximations and expansions
Autocorrelation
Autocorrelations
bootstrap
Bootstrap resampling
Density estimation
Exact sciences and technology
Inference from stochastic processes
time series analysis
Mathematical analysis
Mathematical foundations
Mathematics
periodogram ordinates
Probability and statistics
ratio statistics
Sciences and techniques of general use
Spectral energy distribution
spectral mean
Statistical theories
Statistical variance
Statistics
Time series
Time series analysis
Whittle estimators
title A Frequency Domain Bootstrap for Ratio Statistics in Time Series Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Frequency%20Domain%20Bootstrap%20for%20Ratio%20Statistics%20in%20Time%20Series%20Analysis&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Dahlhaus,%20R.&rft.date=1996-10-01&rft.volume=24&rft.issue=5&rft.spage=1934&rft.epage=1963&rft.pages=1934-1963&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1069362304&rft_dat=%3Cjstor_proje%3E2242635%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242635&rfr_iscdi=true