Direct Estimation of Low-Dimensional Components in Additive Models

Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1998-06, Vol.26 (3), p.943-971
Hauptverfasser: Fan, Jianqing, Hardle, Wolfgang, Mammen, Enno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 3
container_start_page 943
container_title The Annals of statistics
container_volume 26
creator Fan, Jianqing
Hardle, Wolfgang
Mammen, Enno
description Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possible a fast computation and allows an asymptotic distribution theory. In this paper an asymptotic treatment of this estimate is offered for several models. A modification of this procedure is introduced. We consider weighted marginal integration for local linear fits and we show that this estimate has the following advantages. (i) With an appropriate choice of the weight function, the additive components can be efficiently estimated: An additive component can be estimated with the same asymptotic bias and variance as if the other components were known. (ii) Application of local linear fits reduces the design related bias.
doi_str_mv 10.1214/aos/1024691083
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1024691083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>120063</jstor_id><sourcerecordid>120063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-94e2beb14cae08128c090c0f90eae4468073bb94355ae32c13364dda62b2a3e63</originalsourceid><addsrcrecordid>eNplkL1PwzAUxC0EEqWwsrBkYE37_BE33ihp-ZCCWOgcOc6L5CqNKzuA-O8xatQOTE863d376Qi5pTCjjIq5dmFOgQmpKOT8jEwYlXmaKynPyQRAQZpxKS7JVQhbAMiU4BPyuLIezZCsw2B3erCuT1yblO47Xdkd9iEKuksKt9u7HvshJLZPlk1jB_uFyZtrsAvX5KLVXcCb8U7J5mn9Ubyk5fvza7EsUyOEGlIlkNVYU2E0Qk5ZbiKSgVYBahRC5rDgdR2hskwjZ4bySNs0WrKaaY6ST8nDoXfv3TYy46fpbFPtfQT3P5XTtio25aiOJ25SnTaJFbNDhfEuBI_tMU2h-hvxf-B-_KmD0V3rdW9sOKYYX6gsz6Lt7mDbhsH5UykDkJz_ApZ4e2E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Estimation of Low-Dimensional Components in Additive Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Fan, Jianqing ; Hardle, Wolfgang ; Mammen, Enno</creator><creatorcontrib>Fan, Jianqing ; Hardle, Wolfgang ; Mammen, Enno</creatorcontrib><description>Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possible a fast computation and allows an asymptotic distribution theory. In this paper an asymptotic treatment of this estimate is offered for several models. A modification of this procedure is introduced. We consider weighted marginal integration for local linear fits and we show that this estimate has the following advantages. (i) With an appropriate choice of the weight function, the additive components can be efficiently estimated: An additive component can be estimated with the same asymptotic bias and variance as if the other components were known. (ii) Application of local linear fits reduces the design related bias.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1024691083</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>Approximation ; Consistent estimators ; Data smoothing ; Density estimation ; Estimators ; Exact sciences and technology ; Inference from stochastic processes; time series analysis ; Linear inference, regression ; Linear models ; Linear regression ; Mathematics ; Multivariate analysis ; Nonparametric Function Estimation ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Statistical variance ; Statistics ; Weighting functions</subject><ispartof>The Annals of statistics, 1998-06, Vol.26 (3), p.943-971</ispartof><rights>Copyright 1998 The Institute of Mathematical Statistics</rights><rights>1998 INIST-CNRS</rights><rights>Copyright 1998 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-94e2beb14cae08128c090c0f90eae4468073bb94355ae32c13364dda62b2a3e63</citedby><cites>FETCH-LOGICAL-c449t-94e2beb14cae08128c090c0f90eae4468073bb94355ae32c13364dda62b2a3e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/120063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/120063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2379585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Hardle, Wolfgang</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><title>Direct Estimation of Low-Dimensional Components in Additive Models</title><title>The Annals of statistics</title><description>Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possible a fast computation and allows an asymptotic distribution theory. In this paper an asymptotic treatment of this estimate is offered for several models. A modification of this procedure is introduced. We consider weighted marginal integration for local linear fits and we show that this estimate has the following advantages. (i) With an appropriate choice of the weight function, the additive components can be efficiently estimated: An additive component can be estimated with the same asymptotic bias and variance as if the other components were known. (ii) Application of local linear fits reduces the design related bias.</description><subject>Approximation</subject><subject>Consistent estimators</subject><subject>Data smoothing</subject><subject>Density estimation</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric Function Estimation</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Weighting functions</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkL1PwzAUxC0EEqWwsrBkYE37_BE33ihp-ZCCWOgcOc6L5CqNKzuA-O8xatQOTE863d376Qi5pTCjjIq5dmFOgQmpKOT8jEwYlXmaKynPyQRAQZpxKS7JVQhbAMiU4BPyuLIezZCsw2B3erCuT1yblO47Xdkd9iEKuksKt9u7HvshJLZPlk1jB_uFyZtrsAvX5KLVXcCb8U7J5mn9Ubyk5fvza7EsUyOEGlIlkNVYU2E0Qk5ZbiKSgVYBahRC5rDgdR2hskwjZ4bySNs0WrKaaY6ST8nDoXfv3TYy46fpbFPtfQT3P5XTtio25aiOJ25SnTaJFbNDhfEuBI_tMU2h-hvxf-B-_KmD0V3rdW9sOKYYX6gsz6Lt7mDbhsH5UykDkJz_ApZ4e2E</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Fan, Jianqing</creator><creator>Hardle, Wolfgang</creator><creator>Mammen, Enno</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980601</creationdate><title>Direct Estimation of Low-Dimensional Components in Additive Models</title><author>Fan, Jianqing ; Hardle, Wolfgang ; Mammen, Enno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-94e2beb14cae08128c090c0f90eae4468073bb94355ae32c13364dda62b2a3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Approximation</topic><topic>Consistent estimators</topic><topic>Data smoothing</topic><topic>Density estimation</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric Function Estimation</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Hardle, Wolfgang</creatorcontrib><creatorcontrib>Mammen, Enno</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jianqing</au><au>Hardle, Wolfgang</au><au>Mammen, Enno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Estimation of Low-Dimensional Components in Additive Models</atitle><jtitle>The Annals of statistics</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>26</volume><issue>3</issue><spage>943</spage><epage>971</epage><pages>943-971</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possible a fast computation and allows an asymptotic distribution theory. In this paper an asymptotic treatment of this estimate is offered for several models. A modification of this procedure is introduced. We consider weighted marginal integration for local linear fits and we show that this estimate has the following advantages. (i) With an appropriate choice of the weight function, the additive components can be efficiently estimated: An additive component can be estimated with the same asymptotic bias and variance as if the other components were known. (ii) Application of local linear fits reduces the design related bias.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1024691083</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1998-06, Vol.26 (3), p.943-971
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1024691083
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects Approximation
Consistent estimators
Data smoothing
Density estimation
Estimators
Exact sciences and technology
Inference from stochastic processes
time series analysis
Linear inference, regression
Linear models
Linear regression
Mathematics
Multivariate analysis
Nonparametric Function Estimation
Probability and statistics
Regression analysis
Sciences and techniques of general use
Statistical variance
Statistics
Weighting functions
title Direct Estimation of Low-Dimensional Components in Additive Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Estimation%20of%20Low-Dimensional%20Components%20in%20Additive%20Models&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Fan,%20Jianqing&rft.date=1998-06-01&rft.volume=26&rft.issue=3&rft.spage=943&rft.epage=971&rft.pages=943-971&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1024691083&rft_dat=%3Cjstor_proje%3E120063%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=120063&rfr_iscdi=true