General Notions of Statistical Depth Function

Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2000-04, Vol.28 (2), p.461-482
Hauptverfasser: Zuo, Yijun, Serfling, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 2
container_start_page 461
container_title The Annals of statistics
container_volume 28
creator Zuo, Yijun
Serfling, Robert
description Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the halfspace depth behaves very well overall in comparison with various competitors.
doi_str_mv 10.1214/aos/1016218226
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1016218226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2674037</jstor_id><sourcerecordid>2674037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-12ad4b6b451ff59b89aeb8ce7cc0ef4dbd4645e089e12e93888211054a3172d53</originalsourceid><addsrcrecordid>eNplULtOwzAUtRBIlMLKxJCBNa2vX7E3UGkLUgUDdI4cxxauSlzZ7sDfk6pROzAd6byuzkXoHvAECLCpDmkKGAQBSYi4QCMCQpZSCXGJRhgrXHIq2DW6SWmDMeaK0REql7azUW-L95B96FIRXPGZdfYpe9PTL3aXv4vFvjMH-RZdOb1N9m7AMVov5l-z13L1sXybPa9KwzjOJRDdskY0jINzXDVSadtIYytjsHWsbVomGLdYKgvEKiqlJACYM02hIi2nY_R07N3FsLEm273Z-rbeRf-j428dtK9n69XADtDPr8_z-4rJscLEkFK07pQGXB_-9T_wONzUqV_uou6MT-fU4XkV7W0PR9sm5RBPMhEVw7Sif7g4c-E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General Notions of Statistical Depth Function</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Zuo, Yijun ; Serfling, Robert</creator><creatorcontrib>Zuo, Yijun ; Serfling, Robert</creatorcontrib><description>Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the halfspace depth behaves very well overall in comparison with various competitors.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1016218226</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G20 ; 62H05 ; Convexity ; Covariance matrices ; Data Depth ; Datasets ; Estimators ; Exact sciences and technology ; halfspace depth ; Inference ; Infinity ; Mathematical functions ; Mathematics ; Maximality ; Multivariate analysis ; multivariate symmetry ; Nonparametric inference ; Probability and statistics ; Random sampling ; Sciences and techniques of general use ; simplicial depth ; Statistical depth functions ; Statistical theories ; Statistics</subject><ispartof>The Annals of statistics, 2000-04, Vol.28 (2), p.461-482</ispartof><rights>Copyright 2000 Institute of Mathematical Statistics</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-12ad4b6b451ff59b89aeb8ce7cc0ef4dbd4645e089e12e93888211054a3172d53</citedby><cites>FETCH-LOGICAL-c450t-12ad4b6b451ff59b89aeb8ce7cc0ef4dbd4645e089e12e93888211054a3172d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2674037$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2674037$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1536473$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Yijun</creatorcontrib><creatorcontrib>Serfling, Robert</creatorcontrib><title>General Notions of Statistical Depth Function</title><title>The Annals of statistics</title><description>Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the halfspace depth behaves very well overall in comparison with various competitors.</description><subject>62G20</subject><subject>62H05</subject><subject>Convexity</subject><subject>Covariance matrices</subject><subject>Data Depth</subject><subject>Datasets</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>halfspace depth</subject><subject>Inference</subject><subject>Infinity</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Maximality</subject><subject>Multivariate analysis</subject><subject>multivariate symmetry</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Random sampling</subject><subject>Sciences and techniques of general use</subject><subject>simplicial depth</subject><subject>Statistical depth functions</subject><subject>Statistical theories</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNplULtOwzAUtRBIlMLKxJCBNa2vX7E3UGkLUgUDdI4cxxauSlzZ7sDfk6pROzAd6byuzkXoHvAECLCpDmkKGAQBSYi4QCMCQpZSCXGJRhgrXHIq2DW6SWmDMeaK0REql7azUW-L95B96FIRXPGZdfYpe9PTL3aXv4vFvjMH-RZdOb1N9m7AMVov5l-z13L1sXybPa9KwzjOJRDdskY0jINzXDVSadtIYytjsHWsbVomGLdYKgvEKiqlJACYM02hIi2nY_R07N3FsLEm273Z-rbeRf-j428dtK9n69XADtDPr8_z-4rJscLEkFK07pQGXB_-9T_wONzUqV_uou6MT-fU4XkV7W0PR9sm5RBPMhEVw7Sif7g4c-E</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Zuo, Yijun</creator><creator>Serfling, Robert</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000401</creationdate><title>General Notions of Statistical Depth Function</title><author>Zuo, Yijun ; Serfling, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-12ad4b6b451ff59b89aeb8ce7cc0ef4dbd4645e089e12e93888211054a3172d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>62G20</topic><topic>62H05</topic><topic>Convexity</topic><topic>Covariance matrices</topic><topic>Data Depth</topic><topic>Datasets</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>halfspace depth</topic><topic>Inference</topic><topic>Infinity</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Maximality</topic><topic>Multivariate analysis</topic><topic>multivariate symmetry</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Random sampling</topic><topic>Sciences and techniques of general use</topic><topic>simplicial depth</topic><topic>Statistical depth functions</topic><topic>Statistical theories</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Yijun</creatorcontrib><creatorcontrib>Serfling, Robert</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Yijun</au><au>Serfling, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Notions of Statistical Depth Function</atitle><jtitle>The Annals of statistics</jtitle><date>2000-04-01</date><risdate>2000</risdate><volume>28</volume><issue>2</issue><spage>461</spage><epage>482</epage><pages>461-482</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Statistical depth functions are being formulated ad hoc with increasing popularity in nonparametric inference for multivariate data. Here we introduce several general structures for depth functions, classify many existing examples as special cases, and establish results on the possession, or lack thereof, of four key properties desirable for depth functions in general. Roughly speaking, these properties may be described as: affine invariance, maximality at center, monotonicity relative to deepest point, and vanishing at infinity. This provides a more systematic basis for selection of a depth function. In particular, from these and other considerations it is found that the halfspace depth behaves very well overall in comparison with various competitors.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1016218226</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2000-04, Vol.28 (2), p.461-482
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1016218226
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62G20
62H05
Convexity
Covariance matrices
Data Depth
Datasets
Estimators
Exact sciences and technology
halfspace depth
Inference
Infinity
Mathematical functions
Mathematics
Maximality
Multivariate analysis
multivariate symmetry
Nonparametric inference
Probability and statistics
Random sampling
Sciences and techniques of general use
simplicial depth
Statistical depth functions
Statistical theories
Statistics
title General Notions of Statistical Depth Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Notions%20of%20Statistical%20Depth%20Function&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Zuo,%20Yijun&rft.date=2000-04-01&rft.volume=28&rft.issue=2&rft.spage=461&rft.epage=482&rft.pages=461-482&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1016218226&rft_dat=%3Cjstor_proje%3E2674037%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2674037&rfr_iscdi=true