CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION

We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2012-11, Vol.40 (6), p.2439-2459
1. Verfasser: Ledoux, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2459
container_issue 6
container_start_page 2439
container_title The Annals of probability
container_volume 40
creator Ledoux, M.
description We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.
doi_str_mv 10.1214/11-aop685
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1351258731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41713971</jstor_id><sourcerecordid>41713971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</originalsourceid><addsrcrecordid>eNpVkV9LwzAUxYMoOKcPfgAh4JMP1dz-SRqfLF1nh10jtRPfQps2uDLtbDvBb2_GxkRCuHA4-d17TxC6BHILNrh3AFbRrqnvHaGRDdS3fO6-HaMRIRwsYNw_RWd93xBCKGPuCN2HcSBesJjiAM-D7Em8YvEcZUEuMhykE5zHEZ6KRZbHeC7mUZrjUKSTWT4T6Tk60cWqry_2dYwW0ygPYysRj7MwSCzlMhgsxWnJeF0wpXzKGdW0MMcFboYEjyiqeOlR4JVTgq2dqgKtgCldEk9zrbUzRg877rprm1oN9UatlpVcd8uPovuRbbGU4SLZq_tiMpDgeGB7PnPAIG52iPdi9e9hHCRyq5l4HNdE9b31Xh_afW3qfpBNu-k-zYYSbNvxbY967h9RdW3fd7U-YIHI7U9IABmIZ7Ok8V7tvE0_tN3B6AIDh5v7C49jfgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1223825654</pqid></control><display><type>article</type><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Ledoux, M.</creator><creatorcontrib>Ledoux, M.</creatorcontrib><description>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/11-aop685</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>60F05 ; 60H99 ; 60J35 ; 60J60 ; 60J99 ; Algebra ; Chaos ; Chaos theory ; Convergence ; eigenfunction ; Eigenfunctions ; Eigenvalues ; fourth moment ; Gamma-calculus ; Gaussian distributions ; Integration by parts ; iterated gradient ; Markov analysis ; Markov operator ; Mathematical moments ; Normal distribution ; Polynomials ; Spectral theory ; Stein’s method ; Studies</subject><ispartof>The Annals of probability, 2012-11, Vol.40 (6), p.2439-2459</ispartof><rights>Copyright © 2012 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Nov 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2012 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</citedby><cites>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713971$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41713971$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00934894$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledoux, M.</creatorcontrib><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><title>The Annals of probability</title><description>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</description><subject>60F05</subject><subject>60H99</subject><subject>60J35</subject><subject>60J60</subject><subject>60J99</subject><subject>Algebra</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>Convergence</subject><subject>eigenfunction</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>fourth moment</subject><subject>Gamma-calculus</subject><subject>Gaussian distributions</subject><subject>Integration by parts</subject><subject>iterated gradient</subject><subject>Markov analysis</subject><subject>Markov operator</subject><subject>Mathematical moments</subject><subject>Normal distribution</subject><subject>Polynomials</subject><subject>Spectral theory</subject><subject>Stein’s method</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkV9LwzAUxYMoOKcPfgAh4JMP1dz-SRqfLF1nh10jtRPfQps2uDLtbDvBb2_GxkRCuHA4-d17TxC6BHILNrh3AFbRrqnvHaGRDdS3fO6-HaMRIRwsYNw_RWd93xBCKGPuCN2HcSBesJjiAM-D7Em8YvEcZUEuMhykE5zHEZ6KRZbHeC7mUZrjUKSTWT4T6Tk60cWqry_2dYwW0ygPYysRj7MwSCzlMhgsxWnJeF0wpXzKGdW0MMcFboYEjyiqeOlR4JVTgq2dqgKtgCldEk9zrbUzRg877rprm1oN9UatlpVcd8uPovuRbbGU4SLZq_tiMpDgeGB7PnPAIG52iPdi9e9hHCRyq5l4HNdE9b31Xh_afW3qfpBNu-k-zYYSbNvxbY967h9RdW3fd7U-YIHI7U9IABmIZ7Ok8V7tvE0_tN3B6AIDh5v7C49jfgQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Ledoux, M.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>20121101</creationdate><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><author>Ledoux, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>60F05</topic><topic>60H99</topic><topic>60J35</topic><topic>60J60</topic><topic>60J99</topic><topic>Algebra</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>Convergence</topic><topic>eigenfunction</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>fourth moment</topic><topic>Gamma-calculus</topic><topic>Gaussian distributions</topic><topic>Integration by parts</topic><topic>iterated gradient</topic><topic>Markov analysis</topic><topic>Markov operator</topic><topic>Mathematical moments</topic><topic>Normal distribution</topic><topic>Polynomials</topic><topic>Spectral theory</topic><topic>Stein’s method</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledoux, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledoux, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</atitle><jtitle>The Annals of probability</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>40</volume><issue>6</issue><spage>2439</spage><epage>2459</epage><pages>2439-2459</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/11-aop685</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2012-11, Vol.40 (6), p.2439-2459
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1351258731
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60F05
60H99
60J35
60J60
60J99
Algebra
Chaos
Chaos theory
Convergence
eigenfunction
Eigenfunctions
Eigenvalues
fourth moment
Gamma-calculus
Gaussian distributions
Integration by parts
iterated gradient
Markov analysis
Markov operator
Mathematical moments
Normal distribution
Polynomials
Spectral theory
Stein’s method
Studies
title CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHAOS%20OF%20A%20MARKOV%20OPERATOR%20AND%20THE%20FOURTH%20MOMENT%20CONDITION&rft.jtitle=The%20Annals%20of%20probability&rft.au=Ledoux,%20M.&rft.date=2012-11-01&rft.volume=40&rft.issue=6&rft.spage=2439&rft.epage=2459&rft.pages=2439-2459&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/11-aop685&rft_dat=%3Cjstor_proje%3E41713971%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1223825654&rft_id=info:pmid/&rft_jstor_id=41713971&rfr_iscdi=true