CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION
We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2012-11, Vol.40 (6), p.2439-2459 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2459 |
---|---|
container_issue | 6 |
container_start_page | 2439 |
container_title | The Annals of probability |
container_volume | 40 |
creator | Ledoux, M. |
description | We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly. |
doi_str_mv | 10.1214/11-aop685 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1351258731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41713971</jstor_id><sourcerecordid>41713971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</originalsourceid><addsrcrecordid>eNpVkV9LwzAUxYMoOKcPfgAh4JMP1dz-SRqfLF1nh10jtRPfQps2uDLtbDvBb2_GxkRCuHA4-d17TxC6BHILNrh3AFbRrqnvHaGRDdS3fO6-HaMRIRwsYNw_RWd93xBCKGPuCN2HcSBesJjiAM-D7Em8YvEcZUEuMhykE5zHEZ6KRZbHeC7mUZrjUKSTWT4T6Tk60cWqry_2dYwW0ygPYysRj7MwSCzlMhgsxWnJeF0wpXzKGdW0MMcFboYEjyiqeOlR4JVTgq2dqgKtgCldEk9zrbUzRg877rprm1oN9UatlpVcd8uPovuRbbGU4SLZq_tiMpDgeGB7PnPAIG52iPdi9e9hHCRyq5l4HNdE9b31Xh_afW3qfpBNu-k-zYYSbNvxbY967h9RdW3fd7U-YIHI7U9IABmIZ7Ok8V7tvE0_tN3B6AIDh5v7C49jfgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1223825654</pqid></control><display><type>article</type><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Ledoux, M.</creator><creatorcontrib>Ledoux, M.</creatorcontrib><description>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/11-aop685</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>60F05 ; 60H99 ; 60J35 ; 60J60 ; 60J99 ; Algebra ; Chaos ; Chaos theory ; Convergence ; eigenfunction ; Eigenfunctions ; Eigenvalues ; fourth moment ; Gamma-calculus ; Gaussian distributions ; Integration by parts ; iterated gradient ; Markov analysis ; Markov operator ; Mathematical moments ; Normal distribution ; Polynomials ; Spectral theory ; Stein’s method ; Studies</subject><ispartof>The Annals of probability, 2012-11, Vol.40 (6), p.2439-2459</ispartof><rights>Copyright © 2012 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Nov 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2012 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</citedby><cites>FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41713971$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41713971$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00934894$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ledoux, M.</creatorcontrib><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><title>The Annals of probability</title><description>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</description><subject>60F05</subject><subject>60H99</subject><subject>60J35</subject><subject>60J60</subject><subject>60J99</subject><subject>Algebra</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>Convergence</subject><subject>eigenfunction</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>fourth moment</subject><subject>Gamma-calculus</subject><subject>Gaussian distributions</subject><subject>Integration by parts</subject><subject>iterated gradient</subject><subject>Markov analysis</subject><subject>Markov operator</subject><subject>Mathematical moments</subject><subject>Normal distribution</subject><subject>Polynomials</subject><subject>Spectral theory</subject><subject>Stein’s method</subject><subject>Studies</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkV9LwzAUxYMoOKcPfgAh4JMP1dz-SRqfLF1nh10jtRPfQps2uDLtbDvBb2_GxkRCuHA4-d17TxC6BHILNrh3AFbRrqnvHaGRDdS3fO6-HaMRIRwsYNw_RWd93xBCKGPuCN2HcSBesJjiAM-D7Em8YvEcZUEuMhykE5zHEZ6KRZbHeC7mUZrjUKSTWT4T6Tk60cWqry_2dYwW0ygPYysRj7MwSCzlMhgsxWnJeF0wpXzKGdW0MMcFboYEjyiqeOlR4JVTgq2dqgKtgCldEk9zrbUzRg877rprm1oN9UatlpVcd8uPovuRbbGU4SLZq_tiMpDgeGB7PnPAIG52iPdi9e9hHCRyq5l4HNdE9b31Xh_afW3qfpBNu-k-zYYSbNvxbY967h9RdW3fd7U-YIHI7U9IABmIZ7Ok8V7tvE0_tN3B6AIDh5v7C49jfgQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Ledoux, M.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>20121101</creationdate><title>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</title><author>Ledoux, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c96b79ea7cc86976f6a6a6419685150c6c9b5619d3b12f3dd1fc17cfb05f9fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>60F05</topic><topic>60H99</topic><topic>60J35</topic><topic>60J60</topic><topic>60J99</topic><topic>Algebra</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>Convergence</topic><topic>eigenfunction</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>fourth moment</topic><topic>Gamma-calculus</topic><topic>Gaussian distributions</topic><topic>Integration by parts</topic><topic>iterated gradient</topic><topic>Markov analysis</topic><topic>Markov operator</topic><topic>Mathematical moments</topic><topic>Normal distribution</topic><topic>Polynomials</topic><topic>Spectral theory</topic><topic>Stein’s method</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ledoux, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ledoux, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION</atitle><jtitle>The Annals of probability</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>40</volume><issue>6</issue><spage>2439</spage><epage>2459</epage><pages>2439-2459</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We analyze from the viewpoint of an abstract Markov operator recent results by Nualart and Peccati, and Nourdin and Peccati, on the fourth moment as a condition on a Wiener chaos to have a distribution close to Gaussian. In particular, we are led to introduce a notion of chaos associated to a Markov operator through its iterated gradients and present conditions on the (pure) point spectrum for a sequence of chaos eigenfunctions to converge to a Gaussian distribution. Convergence to gamma distributions may be examined similarly.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/11-aop685</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2012-11, Vol.40 (6), p.2439-2459 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1351258731 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 60F05 60H99 60J35 60J60 60J99 Algebra Chaos Chaos theory Convergence eigenfunction Eigenfunctions Eigenvalues fourth moment Gamma-calculus Gaussian distributions Integration by parts iterated gradient Markov analysis Markov operator Mathematical moments Normal distribution Polynomials Spectral theory Stein’s method Studies |
title | CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CHAOS%20OF%20A%20MARKOV%20OPERATOR%20AND%20THE%20FOURTH%20MOMENT%20CONDITION&rft.jtitle=The%20Annals%20of%20probability&rft.au=Ledoux,%20M.&rft.date=2012-11-01&rft.volume=40&rft.issue=6&rft.spage=2439&rft.epage=2459&rft.pages=2439-2459&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/11-aop685&rft_dat=%3Cjstor_proje%3E41713971%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1223825654&rft_id=info:pmid/&rft_jstor_id=41713971&rfr_iscdi=true |