Branching Particle Systems and Superprocesses

We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1991-07, Vol.19 (3), p.1157-1194
1. Verfasser: Dynkin, E. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 3
container_start_page 1157
container_title The Annals of probability
container_volume 19
creator Dynkin, E. B.
description We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.
doi_str_mv 10.1214/aop/1176990339
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2244477</jstor_id><sourcerecordid>2244477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNa3PdnPxBlTlQ4oEUqnEFl0cG1KlTWSnQ_89qRqVgemku_dx7zF2C3wCAtSUmnYKgInWXEp9xkYCkjROtfo6ZyPONcSAOr1kVyGsOecJohqx-MnT1vxU2-_og3xXmdpGy33o7CZEtC2j5a61vvWNsSHYcM0uHNXB3gxzzFbPi8_5a5y9v7zNH7PYSEi6uCBUIAtVYkGWnEtk_59Q6BwXTigwwLFEBKUk8R5YOq5LianlpE1iCzlmD0fd3nltTWd3pq7KvPXVhvw-b6jK56ts2A6jj5__xe8lJkcJ45sQvHUnNvD80Nd_wv3gScFQ7Q69VOHEmqnZDHvkmN0dYevQNf50FkIphSh_AZYKdMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branching Particle Systems and Superprocesses</title><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Dynkin, E. B.</creator><creatorcontrib>Dynkin, E. B.</creatorcontrib><description>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176990339</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G57 ; 60J25 ; 60J50 ; 60J80 ; Branching particle systems ; Exact sciences and technology ; historical processes ; historical superprocesses ; immigration ; linear additive functionals ; Markov processes ; Mathematical functions ; Mathematics ; measure-valued processes ; moment functions ; Particle interactions ; Particle mass ; Probability and statistics ; Probability theory and stochastic processes ; Radon ; Sciences and techniques of general use ; special Markov property ; Stochastic processes ; Stopping distances ; superprocesses ; Transition probabilities ; Vertices</subject><ispartof>The Annals of probability, 1991-07, Vol.19 (3), p.1157-1194</ispartof><rights>Copyright 1991 Institute of Mathematical Statistics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2244477$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2244477$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5455790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dynkin, E. B.</creatorcontrib><title>Branching Particle Systems and Superprocesses</title><title>The Annals of probability</title><description>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</description><subject>60G57</subject><subject>60J25</subject><subject>60J50</subject><subject>60J80</subject><subject>Branching particle systems</subject><subject>Exact sciences and technology</subject><subject>historical processes</subject><subject>historical superprocesses</subject><subject>immigration</subject><subject>linear additive functionals</subject><subject>Markov processes</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>measure-valued processes</subject><subject>moment functions</subject><subject>Particle interactions</subject><subject>Particle mass</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Radon</subject><subject>Sciences and techniques of general use</subject><subject>special Markov property</subject><subject>Stochastic processes</subject><subject>Stopping distances</subject><subject>superprocesses</subject><subject>Transition probabilities</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNa3PdnPxBlTlQ4oEUqnEFl0cG1KlTWSnQ_89qRqVgemku_dx7zF2C3wCAtSUmnYKgInWXEp9xkYCkjROtfo6ZyPONcSAOr1kVyGsOecJohqx-MnT1vxU2-_og3xXmdpGy33o7CZEtC2j5a61vvWNsSHYcM0uHNXB3gxzzFbPi8_5a5y9v7zNH7PYSEi6uCBUIAtVYkGWnEtk_59Q6BwXTigwwLFEBKUk8R5YOq5LianlpE1iCzlmD0fd3nltTWd3pq7KvPXVhvw-b6jK56ts2A6jj5__xe8lJkcJ45sQvHUnNvD80Nd_wv3gScFQ7Q69VOHEmqnZDHvkmN0dYevQNf50FkIphSh_AZYKdMc</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Dynkin, E. B.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910701</creationdate><title>Branching Particle Systems and Superprocesses</title><author>Dynkin, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>60G57</topic><topic>60J25</topic><topic>60J50</topic><topic>60J80</topic><topic>Branching particle systems</topic><topic>Exact sciences and technology</topic><topic>historical processes</topic><topic>historical superprocesses</topic><topic>immigration</topic><topic>linear additive functionals</topic><topic>Markov processes</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>measure-valued processes</topic><topic>moment functions</topic><topic>Particle interactions</topic><topic>Particle mass</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Radon</topic><topic>Sciences and techniques of general use</topic><topic>special Markov property</topic><topic>Stochastic processes</topic><topic>Stopping distances</topic><topic>superprocesses</topic><topic>Transition probabilities</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dynkin, E. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dynkin, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching Particle Systems and Superprocesses</atitle><jtitle>The Annals of probability</jtitle><date>1991-07-01</date><risdate>1991</risdate><volume>19</volume><issue>3</issue><spage>1157</spage><epage>1194</epage><pages>1157-1194</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176990339</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 1991-07, Vol.19 (3), p.1157-1194
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990339
source Project Euclid; JSTOR; EZB Electronic Journals Library
subjects 60G57
60J25
60J50
60J80
Branching particle systems
Exact sciences and technology
historical processes
historical superprocesses
immigration
linear additive functionals
Markov processes
Mathematical functions
Mathematics
measure-valued processes
moment functions
Particle interactions
Particle mass
Probability and statistics
Probability theory and stochastic processes
Radon
Sciences and techniques of general use
special Markov property
Stochastic processes
Stopping distances
superprocesses
Transition probabilities
Vertices
title Branching Particle Systems and Superprocesses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20Particle%20Systems%20and%20Superprocesses&rft.jtitle=The%20Annals%20of%20probability&rft.au=Dynkin,%20E.%20B.&rft.date=1991-07-01&rft.volume=19&rft.issue=3&rft.spage=1157&rft.epage=1194&rft.pages=1157-1194&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1176990339&rft_dat=%3Cjstor_proje%3E2244477%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2244477&rfr_iscdi=true