Branching Particle Systems and Superprocesses
We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1991-07, Vol.19 (3), p.1157-1194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1194 |
---|---|
container_issue | 3 |
container_start_page | 1157 |
container_title | The Annals of probability |
container_volume | 19 |
creator | Dynkin, E. B. |
description | We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix. |
doi_str_mv | 10.1214/aop/1176990339 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2244477</jstor_id><sourcerecordid>2244477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</originalsourceid><addsrcrecordid>eNplUD1PwzAQtRBIlMLKxJCBNa3PdnPxBlTlQ4oEUqnEFl0cG1KlTWSnQ_89qRqVgemku_dx7zF2C3wCAtSUmnYKgInWXEp9xkYCkjROtfo6ZyPONcSAOr1kVyGsOecJohqx-MnT1vxU2-_og3xXmdpGy33o7CZEtC2j5a61vvWNsSHYcM0uHNXB3gxzzFbPi8_5a5y9v7zNH7PYSEi6uCBUIAtVYkGWnEtk_59Q6BwXTigwwLFEBKUk8R5YOq5LianlpE1iCzlmD0fd3nltTWd3pq7KvPXVhvw-b6jK56ts2A6jj5__xe8lJkcJ45sQvHUnNvD80Nd_wv3gScFQ7Q69VOHEmqnZDHvkmN0dYevQNf50FkIphSh_AZYKdMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branching Particle Systems and Superprocesses</title><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Dynkin, E. B.</creator><creatorcontrib>Dynkin, E. B.</creatorcontrib><description>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176990339</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G57 ; 60J25 ; 60J50 ; 60J80 ; Branching particle systems ; Exact sciences and technology ; historical processes ; historical superprocesses ; immigration ; linear additive functionals ; Markov processes ; Mathematical functions ; Mathematics ; measure-valued processes ; moment functions ; Particle interactions ; Particle mass ; Probability and statistics ; Probability theory and stochastic processes ; Radon ; Sciences and techniques of general use ; special Markov property ; Stochastic processes ; Stopping distances ; superprocesses ; Transition probabilities ; Vertices</subject><ispartof>The Annals of probability, 1991-07, Vol.19 (3), p.1157-1194</ispartof><rights>Copyright 1991 Institute of Mathematical Statistics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2244477$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2244477$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5455790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dynkin, E. B.</creatorcontrib><title>Branching Particle Systems and Superprocesses</title><title>The Annals of probability</title><description>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</description><subject>60G57</subject><subject>60J25</subject><subject>60J50</subject><subject>60J80</subject><subject>Branching particle systems</subject><subject>Exact sciences and technology</subject><subject>historical processes</subject><subject>historical superprocesses</subject><subject>immigration</subject><subject>linear additive functionals</subject><subject>Markov processes</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>measure-valued processes</subject><subject>moment functions</subject><subject>Particle interactions</subject><subject>Particle mass</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Radon</subject><subject>Sciences and techniques of general use</subject><subject>special Markov property</subject><subject>Stochastic processes</subject><subject>Stopping distances</subject><subject>superprocesses</subject><subject>Transition probabilities</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNplUD1PwzAQtRBIlMLKxJCBNa3PdnPxBlTlQ4oEUqnEFl0cG1KlTWSnQ_89qRqVgemku_dx7zF2C3wCAtSUmnYKgInWXEp9xkYCkjROtfo6ZyPONcSAOr1kVyGsOecJohqx-MnT1vxU2-_og3xXmdpGy33o7CZEtC2j5a61vvWNsSHYcM0uHNXB3gxzzFbPi8_5a5y9v7zNH7PYSEi6uCBUIAtVYkGWnEtk_59Q6BwXTigwwLFEBKUk8R5YOq5LianlpE1iCzlmD0fd3nltTWd3pq7KvPXVhvw-b6jK56ts2A6jj5__xe8lJkcJ45sQvHUnNvD80Nd_wv3gScFQ7Q69VOHEmqnZDHvkmN0dYevQNf50FkIphSh_AZYKdMc</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Dynkin, E. B.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910701</creationdate><title>Branching Particle Systems and Superprocesses</title><author>Dynkin, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba7413b4d7baeaff63214247ff02f241c107d771443a013bdf09d378e0a9c6eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>60G57</topic><topic>60J25</topic><topic>60J50</topic><topic>60J80</topic><topic>Branching particle systems</topic><topic>Exact sciences and technology</topic><topic>historical processes</topic><topic>historical superprocesses</topic><topic>immigration</topic><topic>linear additive functionals</topic><topic>Markov processes</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>measure-valued processes</topic><topic>moment functions</topic><topic>Particle interactions</topic><topic>Particle mass</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Radon</topic><topic>Sciences and techniques of general use</topic><topic>special Markov property</topic><topic>Stochastic processes</topic><topic>Stopping distances</topic><topic>superprocesses</topic><topic>Transition probabilities</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dynkin, E. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dynkin, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching Particle Systems and Superprocesses</atitle><jtitle>The Annals of probability</jtitle><date>1991-07-01</date><risdate>1991</risdate><volume>19</volume><issue>3</issue><spage>1157</spage><epage>1194</epage><pages>1157-1194</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We start from a model of a branching particle system with immigration and with death rate and branching mechanism depending on time and location. Then we consider a limit case when the mass of particles and their life times are small and their density is high. This way, we construct a measure-valued process Xtwhich we call a superprocess. Replacing the underlying Markov process ξtby the corresponding "historical process" ξ≤ t, we construct a measure-valued process Mtin functional spaces which we call a historical superprocess. The moment functions for superprocesses are evaluated. Linear positive additive functionals are studied. They are used to construct a continuous analog of a random tree obtained by stopping every particle at a time depending on its path (say, at the first exit time from a domain). A related special Markov property for superprocesses is proved which is useful for applications to certain nonlinear partial differential equations. The concluding section is devoted to a survey of the literature, and the terminology on Markov processes used in the paper is explained in the Appendix.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176990339</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 1991-07, Vol.19 (3), p.1157-1194 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176990339 |
source | Project Euclid; JSTOR; EZB Electronic Journals Library |
subjects | 60G57 60J25 60J50 60J80 Branching particle systems Exact sciences and technology historical processes historical superprocesses immigration linear additive functionals Markov processes Mathematical functions Mathematics measure-valued processes moment functions Particle interactions Particle mass Probability and statistics Probability theory and stochastic processes Radon Sciences and techniques of general use special Markov property Stochastic processes Stopping distances superprocesses Transition probabilities Vertices |
title | Branching Particle Systems and Superprocesses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20Particle%20Systems%20and%20Superprocesses&rft.jtitle=The%20Annals%20of%20probability&rft.au=Dynkin,%20E.%20B.&rft.date=1991-07-01&rft.volume=19&rft.issue=3&rft.spage=1157&rft.epage=1194&rft.pages=1157-1194&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1176990339&rft_dat=%3Cjstor_proje%3E2244477%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2244477&rfr_iscdi=true |