Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments
We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2006-05, Vol.34 (3), p.821-856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!