Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments

We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2006-05, Vol.34 (3), p.821-856
Hauptverfasser: Bramson, Maury, Zeitouni, Ofer, Zerner, Martin P. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 3
container_start_page 821
container_title The Annals of probability
container_volume 34
creator Bramson, Maury
Zeitouni, Ofer
Zerner, Martin P. W.
description We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.
doi_str_mv 10.1214/009117905000000783
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1151418483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449892</jstor_id><sourcerecordid>25449892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYMoOKdfQBCC79WkSZvkTSn-g4HgNvStZGmirW1Sk1b025u5uRfvy-Xe_M7J5QBwitEFTjG9REhgzATK0G8xTvbAJMU5T7igL_tgsgaSSPBDcBRCE5mcMToBi_mb84MOA5z30travsKF1zpAaSsoYeFGO2ivv2TXtxoa5-FTfHEdfJbte4C1_Ztv7Gftne20HcIxODCyDfpk26dgeXuzKO6T2ePdQ3E9SxQRbEhURjKqK02I4dQwbrTIJM6IwJzxKs9o3FRylQqmmFYq5wzliKwM10YarCoyBVcb3967RqtBj6qtq7L3dSf9d-lkXRbL2Xa7bdL1JcYZpphTTqLF-c7iY4w5lI0bvY1Xl1jkOSbxnAilG0h5F4LXZvcFRuU6__J__lF0thE1YXB-p0gzSgUXKfkBHmmCvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196613539</pqid></control><display><type>article</type><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</creator><creatorcontrib>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</creatorcontrib><description>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117905000000783</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>05C80 ; 60K37 ; 82D30 ; Decision trees ; Ellipticity ; Insulation ; Mathematical functions ; Mathematical models ; Polynomials ; Probabilities ; random environment ; Random variables ; Random walk ; spanning tree ; Studies ; Trees ; Umbrellas ; Vertices ; zero–one law</subject><ispartof>The Annals of probability, 2006-05, Vol.34 (3), p.821-856</ispartof><rights>Copyright 2006 The Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics May 2006</rights><rights>Copyright 2006 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</citedby><cites>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449892$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449892$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bramson, Maury</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><title>The Annals of probability</title><description>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</description><subject>05C80</subject><subject>60K37</subject><subject>82D30</subject><subject>Decision trees</subject><subject>Ellipticity</subject><subject>Insulation</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Probabilities</subject><subject>random environment</subject><subject>Random variables</subject><subject>Random walk</subject><subject>spanning tree</subject><subject>Studies</subject><subject>Trees</subject><subject>Umbrellas</subject><subject>Vertices</subject><subject>zero–one law</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkF9LwzAUxYMoOKdfQBCC79WkSZvkTSn-g4HgNvStZGmirW1Sk1b025u5uRfvy-Xe_M7J5QBwitEFTjG9REhgzATK0G8xTvbAJMU5T7igL_tgsgaSSPBDcBRCE5mcMToBi_mb84MOA5z30travsKF1zpAaSsoYeFGO2ivv2TXtxoa5-FTfHEdfJbte4C1_Ztv7Gftne20HcIxODCyDfpk26dgeXuzKO6T2ePdQ3E9SxQRbEhURjKqK02I4dQwbrTIJM6IwJzxKs9o3FRylQqmmFYq5wzliKwM10YarCoyBVcb3967RqtBj6qtq7L3dSf9d-lkXRbL2Xa7bdL1JcYZpphTTqLF-c7iY4w5lI0bvY1Xl1jkOSbxnAilG0h5F4LXZvcFRuU6__J__lF0thE1YXB-p0gzSgUXKfkBHmmCvQ</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Bramson, Maury</creator><creator>Zeitouni, Ofer</creator><creator>Zerner, Martin P. W.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20060501</creationdate><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><author>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05C80</topic><topic>60K37</topic><topic>82D30</topic><topic>Decision trees</topic><topic>Ellipticity</topic><topic>Insulation</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Probabilities</topic><topic>random environment</topic><topic>Random variables</topic><topic>Random walk</topic><topic>spanning tree</topic><topic>Studies</topic><topic>Trees</topic><topic>Umbrellas</topic><topic>Vertices</topic><topic>zero–one law</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramson, Maury</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramson, Maury</au><au>Zeitouni, Ofer</au><au>Zerner, Martin P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</atitle><jtitle>The Annals of probability</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>34</volume><issue>3</issue><spage>821</spage><epage>856</epage><pages>821-856</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117905000000783</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2006-05, Vol.34 (3), p.821-856
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1151418483
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 05C80
60K37
82D30
Decision trees
Ellipticity
Insulation
Mathematical functions
Mathematical models
Polynomials
Probabilities
random environment
Random variables
Random walk
spanning tree
Studies
Trees
Umbrellas
Vertices
zero–one law
title Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20Spanning%20Trees%20and%20a%20Counterexample%20for%20Random%20Walks%20in%20Random%20Environments&rft.jtitle=The%20Annals%20of%20probability&rft.au=Bramson,%20Maury&rft.date=2006-05-01&rft.volume=34&rft.issue=3&rft.spage=821&rft.epage=856&rft.pages=821-856&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/009117905000000783&rft_dat=%3Cjstor_proje%3E25449892%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196613539&rft_id=info:pmid/&rft_jstor_id=25449892&rfr_iscdi=true