Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments
We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2006-05, Vol.34 (3), p.821-856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 3 |
container_start_page | 821 |
container_title | The Annals of probability |
container_volume | 34 |
creator | Bramson, Maury Zeitouni, Ofer Zerner, Martin P. W. |
description | We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience. |
doi_str_mv | 10.1214/009117905000000783 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1151418483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449892</jstor_id><sourcerecordid>25449892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</originalsourceid><addsrcrecordid>eNplkF9LwzAUxYMoOKdfQBCC79WkSZvkTSn-g4HgNvStZGmirW1Sk1b025u5uRfvy-Xe_M7J5QBwitEFTjG9REhgzATK0G8xTvbAJMU5T7igL_tgsgaSSPBDcBRCE5mcMToBi_mb84MOA5z30travsKF1zpAaSsoYeFGO2ivv2TXtxoa5-FTfHEdfJbte4C1_Ztv7Gftne20HcIxODCyDfpk26dgeXuzKO6T2ePdQ3E9SxQRbEhURjKqK02I4dQwbrTIJM6IwJzxKs9o3FRylQqmmFYq5wzliKwM10YarCoyBVcb3967RqtBj6qtq7L3dSf9d-lkXRbL2Xa7bdL1JcYZpphTTqLF-c7iY4w5lI0bvY1Xl1jkOSbxnAilG0h5F4LXZvcFRuU6__J__lF0thE1YXB-p0gzSgUXKfkBHmmCvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196613539</pqid></control><display><type>article</type><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</creator><creatorcontrib>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</creatorcontrib><description>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117905000000783</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>05C80 ; 60K37 ; 82D30 ; Decision trees ; Ellipticity ; Insulation ; Mathematical functions ; Mathematical models ; Polynomials ; Probabilities ; random environment ; Random variables ; Random walk ; spanning tree ; Studies ; Trees ; Umbrellas ; Vertices ; zero–one law</subject><ispartof>The Annals of probability, 2006-05, Vol.34 (3), p.821-856</ispartof><rights>Copyright 2006 The Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics May 2006</rights><rights>Copyright 2006 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</citedby><cites>FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449892$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449892$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bramson, Maury</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><title>The Annals of probability</title><description>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</description><subject>05C80</subject><subject>60K37</subject><subject>82D30</subject><subject>Decision trees</subject><subject>Ellipticity</subject><subject>Insulation</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Polynomials</subject><subject>Probabilities</subject><subject>random environment</subject><subject>Random variables</subject><subject>Random walk</subject><subject>spanning tree</subject><subject>Studies</subject><subject>Trees</subject><subject>Umbrellas</subject><subject>Vertices</subject><subject>zero–one law</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNplkF9LwzAUxYMoOKdfQBCC79WkSZvkTSn-g4HgNvStZGmirW1Sk1b025u5uRfvy-Xe_M7J5QBwitEFTjG9REhgzATK0G8xTvbAJMU5T7igL_tgsgaSSPBDcBRCE5mcMToBi_mb84MOA5z30travsKF1zpAaSsoYeFGO2ivv2TXtxoa5-FTfHEdfJbte4C1_Ztv7Gftne20HcIxODCyDfpk26dgeXuzKO6T2ePdQ3E9SxQRbEhURjKqK02I4dQwbrTIJM6IwJzxKs9o3FRylQqmmFYq5wzliKwM10YarCoyBVcb3967RqtBj6qtq7L3dSf9d-lkXRbL2Xa7bdL1JcYZpphTTqLF-c7iY4w5lI0bvY1Xl1jkOSbxnAilG0h5F4LXZvcFRuU6__J__lF0thE1YXB-p0gzSgUXKfkBHmmCvQ</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Bramson, Maury</creator><creator>Zeitouni, Ofer</creator><creator>Zerner, Martin P. W.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20060501</creationdate><title>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</title><author>Bramson, Maury ; Zeitouni, Ofer ; Zerner, Martin P. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c5354ede33f84f78fe95a15391878d6548fedab297c7ecc6870603bf8efaf1cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>05C80</topic><topic>60K37</topic><topic>82D30</topic><topic>Decision trees</topic><topic>Ellipticity</topic><topic>Insulation</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Polynomials</topic><topic>Probabilities</topic><topic>random environment</topic><topic>Random variables</topic><topic>Random walk</topic><topic>spanning tree</topic><topic>Studies</topic><topic>Trees</topic><topic>Umbrellas</topic><topic>Vertices</topic><topic>zero–one law</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bramson, Maury</creatorcontrib><creatorcontrib>Zeitouni, Ofer</creatorcontrib><creatorcontrib>Zerner, Martin P. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bramson, Maury</au><au>Zeitouni, Ofer</au><au>Zerner, Martin P. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments</atitle><jtitle>The Annals of probability</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>34</volume><issue>3</issue><spage>821</spage><epage>856</epage><pages>821-856</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We construct forests that span${\Bbb Z}^{d}$, d ≥ 2, that are stationary and directed, and whose trees are infinite, but for which the subtrees attached to each vertex are as short as possible. For d ≥ 3, two independent copies of such forests, pointing in opposite directions, can be pruned so as to become disjoint. From this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly elliptic environment of nearest-neighbor transition probabilities on${\Bbb Z}^{d}$, for which the corresponding random walk disobeys a certain zero-one law for directional transience.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117905000000783</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2006-05, Vol.34 (3), p.821-856 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1151418483 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 05C80 60K37 82D30 Decision trees Ellipticity Insulation Mathematical functions Mathematical models Polynomials Probabilities random environment Random variables Random walk spanning tree Studies Trees Umbrellas Vertices zero–one law |
title | Shortest Spanning Trees and a Counterexample for Random Walks in Random Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shortest%20Spanning%20Trees%20and%20a%20Counterexample%20for%20Random%20Walks%20in%20Random%20Environments&rft.jtitle=The%20Annals%20of%20probability&rft.au=Bramson,%20Maury&rft.date=2006-05-01&rft.volume=34&rft.issue=3&rft.spage=821&rft.epage=856&rft.pages=821-856&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/009117905000000783&rft_dat=%3Cjstor_proje%3E25449892%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196613539&rft_id=info:pmid/&rft_jstor_id=25449892&rfr_iscdi=true |