The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems

We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate goin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2004-07, Vol.32 (3), p.1830-1872
1. Verfasser: Jacod, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1872
container_issue 3
container_start_page 1830
container_title The Annals of probability
container_volume 32
creator Jacod, Jean
description We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α > 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha
doi_str_mv 10.1214/009117904000000667
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1089808413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481597</jstor_id><sourcerecordid>3481597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</originalsourceid><addsrcrecordid>eNplkd2KEzEUx4MoWFdfQLwIghdejOZr8uGVS7e6woAX3QXvQppJaMp00k0yhX0kn8MXM2NLRczNgXN-_98hHABeY_QBE8w-IqQwFgox9OdxLp6ABcFcNlKxH0_BYgaaSsjn4EXOu5kRgi3A-m7r4GoaXIJru3V7B31MsPv18_gIb1I4uhGuS7Rbk0uw8CZ475IbSzADXD1MpoQ45k-wC_tQYFXF5Pb5JXjmzZDdq3O9AvdfVnfL26b7_vXb8rprLGtlaZhj2DLDNhLJTU9ErxynpO1NL2zbsrZvnbGKI4q94YpuJOWWtBYh72gvlKdX4PPJe0hx52xxkx1Crw8p7E161NEEvbzvzt1zMfGgMZKq7mSYVsX7k2Jrhn-Ct9ednnsIYUQIk0dc2beXdQ-Ty0Xv4pTG-kONFedYCCkrRE6QTTHn5PzFipGeT6X_P1UNvTubTbZm8MmMNuS_SY4JRWrm3py4XS4xXeaUSdzW8W8_bZwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196617788</pqid></control><display><type>article</type><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Jacod, Jean</creator><creatorcontrib>Jacod, Jean</creatorcontrib><description>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α &gt; 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha &lt;1$.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000667</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F17 ; 60J30 ; 60J75 ; 65C30 ; Approximation ; Convergence ; Differential equations ; Eigenfunctions ; Error rates ; Euler scheme ; Exact sciences and technology ; General topics ; Limit theorems ; Lévy process ; Martingales ; Mathematical analysis ; Mathematical theorems ; Mathematics ; Perceptron convergence procedure ; Probabilities ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; Random variables ; rate of convergence ; Sciences and techniques of general use ; Stochastic analysis ; Stochastic models ; Studies ; Topology</subject><ispartof>The Annals of probability, 2004-07, Vol.32 (3), p.1830-1872</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Jul 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</citedby><cites>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16123097$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00102248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacod, Jean</creatorcontrib><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><title>The Annals of probability</title><description>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α &gt; 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha &lt;1$.</description><subject>60F17</subject><subject>60J30</subject><subject>60J75</subject><subject>65C30</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Eigenfunctions</subject><subject>Error rates</subject><subject>Euler scheme</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Limit theorems</subject><subject>Lévy process</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>Random variables</subject><subject>rate of convergence</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Topology</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkd2KEzEUx4MoWFdfQLwIghdejOZr8uGVS7e6woAX3QXvQppJaMp00k0yhX0kn8MXM2NLRczNgXN-_98hHABeY_QBE8w-IqQwFgox9OdxLp6ABcFcNlKxH0_BYgaaSsjn4EXOu5kRgi3A-m7r4GoaXIJru3V7B31MsPv18_gIb1I4uhGuS7Rbk0uw8CZ475IbSzADXD1MpoQ45k-wC_tQYFXF5Pb5JXjmzZDdq3O9AvdfVnfL26b7_vXb8rprLGtlaZhj2DLDNhLJTU9ErxynpO1NL2zbsrZvnbGKI4q94YpuJOWWtBYh72gvlKdX4PPJe0hx52xxkx1Crw8p7E161NEEvbzvzt1zMfGgMZKq7mSYVsX7k2Jrhn-Ct9ednnsIYUQIk0dc2beXdQ-Ty0Xv4pTG-kONFedYCCkrRE6QTTHn5PzFipGeT6X_P1UNvTubTbZm8MmMNuS_SY4JRWrm3py4XS4xXeaUSdzW8W8_bZwq</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Jacod, Jean</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>20040701</creationdate><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><author>Jacod, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60F17</topic><topic>60J30</topic><topic>60J75</topic><topic>65C30</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Eigenfunctions</topic><topic>Error rates</topic><topic>Euler scheme</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Limit theorems</topic><topic>Lévy process</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>Random variables</topic><topic>rate of convergence</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacod, Jean</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacod, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</atitle><jtitle>The Annals of probability</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>32</volume><issue>3</issue><spage>1830</spage><epage>1872</epage><pages>1830-1872</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α &gt; 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha &lt;1$.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000667</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2004-07, Vol.32 (3), p.1830-1872
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1089808413
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects 60F17
60J30
60J75
65C30
Approximation
Convergence
Differential equations
Eigenfunctions
Error rates
Euler scheme
Exact sciences and technology
General topics
Limit theorems
Lévy process
Martingales
Mathematical analysis
Mathematical theorems
Mathematics
Perceptron convergence procedure
Probabilities
Probability
Probability and statistics
Probability theory and stochastic processes
Probability theory on algebraic and topological structures
Random variables
rate of convergence
Sciences and techniques of general use
Stochastic analysis
Stochastic models
Studies
Topology
title The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Euler%20Scheme%20for%20L%C3%A9vy%20Driven%20Stochastic%20Differential%20Equations:%20Limit%20Theorems&rft.jtitle=The%20Annals%20of%20probability&rft.au=Jacod,%20Jean&rft.date=2004-07-01&rft.volume=32&rft.issue=3&rft.spage=1830&rft.epage=1872&rft.pages=1830-1872&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000667&rft_dat=%3Cjstor_proje%3E3481597%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196617788&rft_id=info:pmid/&rft_jstor_id=3481597&rfr_iscdi=true