The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems
We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate goin...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2004-07, Vol.32 (3), p.1830-1872 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1872 |
---|---|
container_issue | 3 |
container_start_page | 1830 |
container_title | The Annals of probability |
container_volume | 32 |
creator | Jacod, Jean |
description | We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α > 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha |
doi_str_mv | 10.1214/009117904000000667 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1089808413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481597</jstor_id><sourcerecordid>3481597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</originalsourceid><addsrcrecordid>eNplkd2KEzEUx4MoWFdfQLwIghdejOZr8uGVS7e6woAX3QXvQppJaMp00k0yhX0kn8MXM2NLRczNgXN-_98hHABeY_QBE8w-IqQwFgox9OdxLp6ABcFcNlKxH0_BYgaaSsjn4EXOu5kRgi3A-m7r4GoaXIJru3V7B31MsPv18_gIb1I4uhGuS7Rbk0uw8CZ475IbSzADXD1MpoQ45k-wC_tQYFXF5Pb5JXjmzZDdq3O9AvdfVnfL26b7_vXb8rprLGtlaZhj2DLDNhLJTU9ErxynpO1NL2zbsrZvnbGKI4q94YpuJOWWtBYh72gvlKdX4PPJe0hx52xxkx1Crw8p7E161NEEvbzvzt1zMfGgMZKq7mSYVsX7k2Jrhn-Ct9ednnsIYUQIk0dc2beXdQ-Ty0Xv4pTG-kONFedYCCkrRE6QTTHn5PzFipGeT6X_P1UNvTubTbZm8MmMNuS_SY4JRWrm3py4XS4xXeaUSdzW8W8_bZwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196617788</pqid></control><display><type>article</type><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>Jacod, Jean</creator><creatorcontrib>Jacod, Jean</creatorcontrib><description>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α > 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha <1$.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000667</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F17 ; 60J30 ; 60J75 ; 65C30 ; Approximation ; Convergence ; Differential equations ; Eigenfunctions ; Error rates ; Euler scheme ; Exact sciences and technology ; General topics ; Limit theorems ; Lévy process ; Martingales ; Mathematical analysis ; Mathematical theorems ; Mathematics ; Perceptron convergence procedure ; Probabilities ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; Random variables ; rate of convergence ; Sciences and techniques of general use ; Stochastic analysis ; Stochastic models ; Studies ; Topology</subject><ispartof>The Annals of probability, 2004-07, Vol.32 (3), p.1830-1872</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Jul 2004</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</citedby><cites>FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481597$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481597$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16123097$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00102248$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacod, Jean</creatorcontrib><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><title>The Annals of probability</title><description>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α > 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha <1$.</description><subject>60F17</subject><subject>60J30</subject><subject>60J75</subject><subject>65C30</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Eigenfunctions</subject><subject>Error rates</subject><subject>Euler scheme</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Limit theorems</subject><subject>Lévy process</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Perceptron convergence procedure</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>Random variables</subject><subject>rate of convergence</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic analysis</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Topology</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkd2KEzEUx4MoWFdfQLwIghdejOZr8uGVS7e6woAX3QXvQppJaMp00k0yhX0kn8MXM2NLRczNgXN-_98hHABeY_QBE8w-IqQwFgox9OdxLp6ABcFcNlKxH0_BYgaaSsjn4EXOu5kRgi3A-m7r4GoaXIJru3V7B31MsPv18_gIb1I4uhGuS7Rbk0uw8CZ475IbSzADXD1MpoQ45k-wC_tQYFXF5Pb5JXjmzZDdq3O9AvdfVnfL26b7_vXb8rprLGtlaZhj2DLDNhLJTU9ErxynpO1NL2zbsrZvnbGKI4q94YpuJOWWtBYh72gvlKdX4PPJe0hx52xxkx1Crw8p7E161NEEvbzvzt1zMfGgMZKq7mSYVsX7k2Jrhn-Ct9ednnsIYUQIk0dc2beXdQ-Ty0Xv4pTG-kONFedYCCkrRE6QTTHn5PzFipGeT6X_P1UNvTubTbZm8MmMNuS_SY4JRWrm3py4XS4xXeaUSdzW8W8_bZwq</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Jacod, Jean</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope></search><sort><creationdate>20040701</creationdate><title>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</title><author>Jacod, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-4e41c4a4b808bd27d9e6325dad7c5545d5eac96031fa693b836c25c00fe3d79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60F17</topic><topic>60J30</topic><topic>60J75</topic><topic>65C30</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Eigenfunctions</topic><topic>Error rates</topic><topic>Euler scheme</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Limit theorems</topic><topic>Lévy process</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Perceptron convergence procedure</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>Random variables</topic><topic>rate of convergence</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic analysis</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacod, Jean</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacod, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems</atitle><jtitle>The Annals of probability</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>32</volume><issue>3</issue><spage>1830</spage><epage>1872</epage><pages>1830-1872</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We study the Euler scheme for a stochastic differential equation driven by a Lévy process Y. More precisely, we look at the asymptotic behavior of the normalized error process un(Xn-X), where X is the true solution and Xnis its Euler approximation with stepsize 1/n, and unis an appropriate rate going to infinity: if the normalized error processes converge, or are at least tight, we say that the sequence (un) is a rate, which, in addition, is sharp when the limiting process (or processes) is not trivial. We suppose that Y has no Gaussian part (otherwise a rate is known to be$u_{n}=\sqrt{n}$). Then rates are given in terms of the concentration of the Lévy measure of Y around 0 and, further, we prove the convergence of the sequence un(Xn-X) to a nontrivial limit under some further assumptions, which cover all stable processes and a lot of other Lévy processes whose Lévy measure behave like a stable Lévy measure near the origin. For example, when Y is a symmetric stable process with index α ∈ (0, 2), a sharp rate is un=(n/ log n)1/α; when Y is stable but not symmetric, the rate is again un=(n/ log n)1/αwhen α > 1, but it becomes un=n/( log n)2if α = 1 and $u_{n}=n\ \text{if}\ \alpha <1$.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000667</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2004-07, Vol.32 (3), p.1830-1872 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1089808413 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
subjects | 60F17 60J30 60J75 65C30 Approximation Convergence Differential equations Eigenfunctions Error rates Euler scheme Exact sciences and technology General topics Limit theorems Lévy process Martingales Mathematical analysis Mathematical theorems Mathematics Perceptron convergence procedure Probabilities Probability Probability and statistics Probability theory and stochastic processes Probability theory on algebraic and topological structures Random variables rate of convergence Sciences and techniques of general use Stochastic analysis Stochastic models Studies Topology |
title | The Euler Scheme for Lévy Driven Stochastic Differential Equations: Limit Theorems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Euler%20Scheme%20for%20L%C3%A9vy%20Driven%20Stochastic%20Differential%20Equations:%20Limit%20Theorems&rft.jtitle=The%20Annals%20of%20probability&rft.au=Jacod,%20Jean&rft.date=2004-07-01&rft.volume=32&rft.issue=3&rft.spage=1830&rft.epage=1872&rft.pages=1830-1872&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000667&rft_dat=%3Cjstor_proje%3E3481597%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196617788&rft_id=info:pmid/&rft_jstor_id=3481597&rfr_iscdi=true |